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Abstract 

Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics, but recalci-
trance nature of cotton makes it difficult to develop in vitro regeneration. Cotton’s recalcitrance is influenced by geno-
type, explant type, and environmental conditions. To overcome these issues, this study uses different machine learn-
ing-based predictive models by employing multiple input factors. Cotyledonary node explants of two commercial 
cotton cultivars (STN-468 and GSN-12) were isolated from 7–8 days old seedlings, preconditioned with 5, 10, and 20 
mg·L−1 kinetin (KIN) for 10 days. Thereafter, explants were postconditioned on full Murashige and Skoog (MS), ½ MS, ¼ 
MS, and full MS + 0.05 mg·L−1 KIN, cultured in growth room enlightened with red and blue light-emitting diodes (LED) 
combination. Statistical analysis (analysis of variance, regression analysis) was employed to assess the impact of differ-
ent treatments on shoot regeneration, with artificial intelligence (AI) models used for confirming the findings.

Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468, with an average of 4.99 
shoots per explant versus 3.97. Optimal results were achieved with 5 mg·L−1 KIN preconditioning, ¼ MS postcon-
ditioning, and 80% red LED, with maximum of 7.75 shoot count for GSN-12 under these conditions; while STN-468 
reached 6.00 shoots under the conditions of 10 mg·L−1 KIN preconditioning, MS with 0.05 mg·L−1 KIN (postcondi-
tioning) and 75.0% red LED. Rooting was successfully achieved with naphthalene acetic acid and activated charcoal. 
Additionally, three different powerful AI-based models, namely, extreme gradient boost (XGBoost), random forest (RF), 
and the artificial neural network-based multilayer perceptron (MLP) regression models validated the findings.

Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L−1 KIN + ¼ MS + 80% red LED. Applica-
tion of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration 
is helpful to improve cotton regeneration efficiency.
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Introduction
Cotton (Gossypium hirsutum L.), a prominent crop used 
for both oil and fiber, is a member of Malvaceae fam-
ily. It is regarded as the mainstay of the economies of 
several nations throughout the world, supplying raw 
materials largely to the textile and oil sectors (Juturu 
et  al. 2015; Jabran et  al. 2019). Cotton is cultivated in 
around 75 countries or regions, and faces similar types 
of issues, such as heavy infestation of insect pests, dis-
ease outbreaks, and other abiotic stresses (Bakhsh et  al. 
2015; Zafar et al. 2024). The recent advancements in the 
field of biotechnology and molecular biology have ena-
bled researchers to improve the germplasm by develop-
ing resistant varieties against the aforementioned issues 
(Nadeem et al. 2023).

Using biotechnology, researchers around the world 
have developed transgenic cotton against insect pests 
and herbicides (Brookes et al. 2012). Other traits due to 
the use of biotechnological tools include enhanced fiber 
quality (Chen et al. 2015). However, the standardization 
of genetic transformation protocol highly depends on the 
optimization of in  vitro regeneration protocol as cotton 
is considered one of the most recalcitrant crops under 
in  vitro conditions due to low response and non-repro-
ducible protocols (Kumari et al. 2017; Rajasekaran 2004; 
Yavuz et  al. 2020). Although several protocols utilizing 
various explants and plant growth regulators (PGR) have 
been developed recently, researchers are still having dif-
ficulty in finding an effective and repeatable strategy 
that induces multiple shoots. The in  vitro regeneration 
studies on cotton demonstrated somatic embryogenesis, 
embryogenic cell cultures, and organogenesis from mer-
istematic regions (Rajasekaran 2004).

Meristem transformation protocols offer the unique 
ability to change individuals without regard to their geno-
types, with the ability to generate chimeras in large quan-
tities. Slightly fewer cells survive in regenerated tissues 
due to the limited quantities of meristematic cells, which 
lead to low transgenic selection (Firoozabady et al. 1987; 
Sunilkumar et  al. 2001). However, the procedure is still 
time-consuming, and the time it takes to find transfor-
mants is influenced by a cultivar’s capacity to regenerate 
multiple shoots (Keller et al. 1997). The following genera-
tion under this circumstance only demonstrates achieve-
ment in transformation (John 1997). On the other hand, 
with the benefit of a short period of culture, embryo-
genic lines can be routinely subcultured after establish-
ment and used for multiple transformations. In this way, 
there is a possibility of converting more transformants 
into regenerated plantlets (Leelavathi et  al. 2004). One 
of the limiting factors for cotton in  vitro regeneration 
is the explant; previous studies emphasized the need to 

exploit the full potential of the explant (Sunilkumar et al. 
2001). Some explants used for cotton in  vitro regenera-
tion include leaf petiole (Zhang et  al. 2011; Yang et  al. 
2014), hypocotyl (Kumar et  al. 2013), immature zygotic 
embryos (Hussain et  al. 2009), and cotyledonary nodes 
(Bakhsh et  al. 2016). Selection of proper explants with 
proper PGR and culture conditions is also highly cru-
cial for establishing a protocol due to the phenolic com-
pound’s elucidation in the culture medium inhibiting the 
in vitro regeneration of cotton.

Precision agriculture is increasingly relying on arti-
ficial intelligence (AI)-based algorithms in agricultural 
and biological sciences (Sharma et  al. 2020; Whitmire 
et al. 2021) with very limited use in plant biotechnology, 
especially in plant tissue culture (Salehi et al. 2021; Aasim 
et  al. 2024a) as compared with other research areas. In 
recent times, researchers used different models in plant 
tissue culture for optimizing in vitro germination, steri-
lization, organogenesis, and somatic embryogenesis 
(Jafari et al. 2023; Özcan et al. 2023; Şimşek et al. 2024). 
The selection of hyperparameters and  input and output 
relationships largely influenced the performance and 
choice of models used in these investigations. Several 
studies used random forest (RF), extreme gradient boost 
(XGBoost), and multilayer perceptron (MLP) algorithms 
along with various performance metrics to validate their 
results (Katirci et al. 2021; Yan et al. 2020).

In this study, a novel protocol was established by 
exposing cotton explants to high cytokinin concentra-
tion (preconditioning) followed by postconditioning on a 
medium with no or low cytokinin. Furthermore, explants 
were cultivated for in  vitro regeneration and rooting 
under various light emitting diodes (LED) lighting, and 
the outcomes were predicted using AI models. To pre-
cisely estimate shoot counts and validate the experimen-
tal findings, integrating cutting-edge AI models, such as 
artificial neural networks (ANN), RF, and XGBoost, was 
a major goal. With the combination of AI-driven predic-
tive modeling and growth condition optimization, this 
method offers a fresh framework for enhancing tissue 
culture techniques.

Material and methods
In vitro regeneration
The experiment was conducted at The Biotechnology 
laboratory of Karamanoglu Mehmetbey University, Fac-
ulty of Science, Karaman, Türkiye. Two different com-
mercial upland cotton cultivars named GSN-12 (May 
Agro Seeds Pvt Ltd, Türkiye) and Stoneville 468 (STN-
468, Nazili Cotton Research Institute, Nazili, Türkiye) 
were procured. The seeds of both cultivars were delinted 
by using the standard procedure of treating seeds with 
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concentrated  H2SO4 followed by washing with water. The 
surface sterilization of seeds was performed following 
the protocol as described previously (Bakhsh et al. 2016). 
The seeds were exposed to 1%  HgCl2 for 10 min, followed 
by immediate rinsing for 5  min with sterile water for 
one time only. Following a 10-min treatment with 0.2% 
sodium dodecyl sulfate (SDS, Sigma-Aldrich) and 0.2% 
 HgCl2, the seeds were washed 3 times for 5  min each 
time with water. Surface-sterilized seeds were inoculated 
on Murashige & Skoog (MS) medium solidified with agar 
for 7–8 d to obtain cotyledonary node explants. After 
isolation, explants were preconditioned on phytagel-
solidified MS medium (Murashige et al. 1962) augmented 
with different concentrations (5, 10, and 20 mg·L) of 
kinetin (KIN) for 10 d cultured under 80.0% R-LEDs (R:B 
= 4:1 LEDs) lights. Subsequently, explants were cultured 
on a postconditioned medium containing full MS (4.4 
g·L−1), ½ MS (2.2 g·L−1), and ¼ MS (1.1 g·L−1) without 
provided with any PGR. Whereas MS + 0.05 mg·L KIN 
was also used as a fourth postconditioned medium. 
Postconditioned mediums with explants were cultured 
under different red and blue (R:B) LEDs combinations 
in the growth room. The R:B LED combinations used in 
this study were 80.0% R-LEDs, 75.0% R-LEDs (R:B = 3:1), 
and 66.67% R-LEDs (R:B = 2:1). Whereas light photoper-
iod (16 h) and growth room temperature (24 °C ± 1 °C) 
were maintained for all culture conditions. Rooting was 
done by separating the shoots, followed by culture on 
MS media containing naphthalene acetic acid (NAA, 0.1 
mg·L−1), and activated charcoal (1 g·L−1). Pots filled with 
organic peat moss were used for the plant establishment.

The culture media employed in this investigation 
were made according to the standard protocol contain-
ing 30 g·L−1 sucrose with MS at different strengths. 
Preconditioned culture medium was solidified with 
agar (6.5 g·L−1), and phytagel (2.5 g·L−1) was used as 
a  gelling agent. All culture mediums used in this study 
were adjusted at an  approximate pH of 5.8 by utilizing 
a  1  mol·L−1 solution of HCl or NaOH. The filter-steri-
lized (0.22 µm) KIN was added after autoclaving the cul-
ture medium.

Statistical analysis
In this study, six explants per replication were used, and 
the  experiment was repeated twice. The comparison of 
shoot numbers for different cultivars, preconditioning 
doses, postconditioning doses, LEDs, and interaction of 
all individual cultivars was analyzed by ne-way analysis 
of variance (ANOVA) and factorial regression analysis. 
Minitab 20.4 program was used for the analysis, and the 
difference between the means was compared by Tukey’s 
test. Pareto charts, normal plots, and response opti-
mizers were used for optimizing the input variables by 

using Minitab 20.4. To illustrate the association between 
the  independent and dependent variables, 2-D contour 
plots and 3-D surface plots were created using the statis-
tical software Design Expert.

Machine learning (ML) modeling
In this study, preconditioning medium, postconditioning 
medium, and LEDs were used as input variables for two 
different cotton cultivars, and shoot count was used as 
the output variable for ML analysis. Three different mod-
els named XGBoost, RF, and MLP were used as AI mod-
els for data analysis (Chen et  al. 2016; Aggarwal 2018; 
Silva et al. 2019).

In the field of data science, RF algorithm is the most 
popular advanced decision tree model due to its extraor-
dinary accuracy, speed, stability, and usability, especially 
for indicating non-linear relationships. Bagging, also 
known as bootstrap aggregation, is a  technique used by 
RF that trains many decision trees simultaneously and 
aggregates their predictions to enhance the performance 
of the model as a whole to predict the output, which is 
expressed in equation (1) (Pavlov 2019). This process 
involves creating multiple bootstrap samples from the 
training data, training individual models on these sam-
ples, and then combining their predictions.

where, ŷ is the predicted value, fi (x) is the prediction of 
the ith tree for input x, and M represents the total number 
of trees.

XGBoost, another decision-tree-based ML algorithm, 
was employed for regression, classification, and ranking 
types of supervised learning tasks (Chen et al. 2016). By 
incorporating trees into the earlier models, the predic-
tion error is decreased. Equations (2) and (3) present the 
XGBoost objective function and show the model that 
must be minimized at the jth iteration of XGBoost.

The above equation shows a tree ensemble model that 
uses D additive function to predict the output. Here, yi 
is the predicted output; F(xi) is the ensemble of deci-
sion trees; each fd corresponds to an independent tree 
structure.

(1)ŷ =
1

M

M∑

i=1

fi(x)

(2)yi = F(xi) =

D

d=1

fd(xi), fd ∈ F , i = 1, . . . , n

(3)Lj =

n∑

i=1

l
[
yi, ŷ

(j−1)
i +f j(xi)

]
+�

(
fj
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where Lj is the objective function at iteration j that needs 
to be minimized, l is a function of classification or regres-
sion trees (CART) learners composed of a sum of the 
current and previous additive trees, ŷi

(j−1) is the predic-
tion up to (j-1) trees, fj(xi) represents the prediction of 
the jth tree for the ith data point, and � is the regulariza-
tion term.

With multiple perceptrons and using the deep and feed-
forward method, MLP is a preferred ANN model. The 
whole system is dependent on three primary components 
or layers (input, output, and hidden). Using the back-
propagation technique, the weights and biases are modi-
fied in relation to the error (Katirci et  al. 2021), and data 
training keeps going till the next equation is minimized 
[equation (4)].

where E is the error, yk is the value of data point k, ŷk is 
the predicted value of data point k, and K is the sample 
size.

The data, which was composed of 216 data points, were 
divided into two different sets of training and testing with 
the aid of leave-one-out cross-validation (LOO-CV) meth-
odology (Webb et al. 2011). The optimization of hyperpa-
rameters was performed using Grid search for the optimal 
model. Using the free and open-source Python program-
ming language (Van Rossum et  al. 2009) and the sklearn 
package (Pedregosa et  al. 2011), all of the supervised ML 
algorithms were developed.

The performance metrics used to include coefficient 
of determination (R2), which exhibits the strength of the 
association between the dependent variables and the 
model used, and its values vary from 0 to 1. Mean abso-
lute error (MAE) indicates the average magnitude of the 
deviations between an observation’s predicted value and 
its actual value. Mean squared error (MSE) shows the 
distance between a regression line and the observed data 
points. Mean absolute percentage error (MAPE) is a fore-
casting system for prediction accuracy. The ratio between 
the actual and anticipated values is calculated using mean 
squared logarithmic error (MSLE), whereas median abso-
lute error (MedAE) compares the actual observed reaction 
with the anticipated response (0, ∞). The performance 
metrics listed above are all represented mathematically in 
the following equations

(4)E =
1

K

K∑

k=1

(yk − ŷk)
2

(5)R2
= 1−

∑n
i=1(Yi − Ŷi)

2

∑n
i=1(Yi − Ỹ )

2

where Yi is the actual value, Ŷi is the predicted value, Ỹ  is 
the mean of actual values, log(x) is the natural logarithm 
of x, n is the sample size.

Additionally, prior to testing and training of the models, 
all numerical inputs were scaled by using the formula (11).

where X’ is the standardized value, Xi is the actual data, 
μ is the mean of the feature values, and σ is the standard 
deviation of the feature values.

Results
In vitro regeneration
A protocol for in vitro propagation of two commercially 
grown upland cotton cultivars from Türkiye has been 
developed, resulting in enhanced shoot regeneration. 
In this study, preconditioning explants placed oriented 
at 30–60° showed high shoot regeneration frequen-
cies, with single shoot induction occurring within 2–3 
weeks and multiple shoots forming within 4–5 weeks, 
achieving 100% shoot regeneration for both cultivars. 
The use of phytagel as a gelling agent further improved 
the  outcomes, reducing phenolic compound leakage 
and promoting a prolonged culture period without sub-
culturing. The kind of cultivar has a significant impact 
on the in  vitro regeneration of recalcitrant crops along 
with other factors. Cotton’s in vitro regeneration is heav-
ily genotype-dependent, with several cultivars showing 
comparatively low shoot numbers. The two different cul-
tivars used in this study responded in a variable way (P = 
0.000), and an average of 4.99 shoots were attained from 
GSN-12 compared with STN-468, which produced 3.97 
shoots per explant (Table S1).

(6)MSE =
1

n

∑n

i=1
(Yi − Ŷi)

2

(7)MAE =
1

n
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(8)MAPE =
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n
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(9)MSLE =
1

n
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The approach of preconditioning explants with higher 
cytokinin levels and culturing on a basal medium with 
varied MS concentrations and KIN was crucial in induc-
ing multiple shoots without callus formation. Exposure 
of explants to a high KIN-containing medium exerted a 
positive but statistically insignificant impact on shoot 
regeneration frequency (100%) and mean shoot counts 
(P = 0.095). The highest mean shoot count (4.68) were 
attained from media supplemented with 10 mg·L−1 KIN  
followed by 5 mg·L−1 (4.54 shoots) and 20 mg·L−1 (4.22 
shoots). Results revealed the insignificant (P = 0.077) 
but clear impact of postconditioning with different 
MS medium concentrations on shoot induction, with 
the mean shoot count in order of ¼  MS (4.68) ≥ ½ MS 
(4.57) ≥ MS (4.09). Optimized culture conditions, includ-
ing red-to-blue LED combinations, further supported 
shoot proliferation. The three distinct R:B LED combi-
nations employed in this investigation had a discernible 
effect on in vitro propagation of cotton. Results revealed 
the need for the relatively low level of B-LEDs in com-
bination with R-LEDs to induce a maximum number of 
shoots. The mean shoot counts in response to R:B LEDs 
were 80.0% R-LED (5.11) > 75.0% R-LED (4.38) > 66.67% 
R-LED (3.95). The comparison of individual parameters 

like cultivar, KIN dosage for preconditioning, culture 
medium, and LED revealed that GSN-12 cultivar, 10 
mg·L−1 KIN, ¼ MS, and 80.0% R-LED were superior and 
yielded more mean shoot counts compared with their 
respective treatments (Table S1).

The results of individual input variables were also eval-
uated by constructing the boxplot. In Fig.  1a, the box-
plot shows a higher median value for the shoot counts 
of GSN-12 compared with STN-468, whereas the spread 
between the two cultivars is similar. Figure 1b illustrates 
the highest median value achieved by the precondition-
ing of 10 mg·L−1 KIN and has the highest spread for the 
shoot counts. Figure  1c shows ½ MS has the highest 
median value, the presence of a relatively large number 
of extreme values in the upper whisker of ¼  MS, and 
low spread makes the mean shoot count of ¼ MS larger 
than others for postconditioning. Finally, the 80% R-LED 
arrangement demonstrates the highest median values 
together with the spread on the shoot counts (Fig. 1d).

Table  1 presents the combined impact of all the 
parameters (cultivar, KIN preconditioning dosage, cul-
ture medium, and LED) on cotton shoot count, and 
the results were statistically significant (P = 0.000). For 
GSN-12, the maximum shoot count (7.75) was attributed 

Fig. 1 Boxplot depicting the influence of individual input variables on shoot count in cotton (a) cultivar; (b) preconditioning; (c) postconditioning, 
0.05-KIN indicate MS + 0.05 mg·L−1 KIN; 1.10-MS, 2.20-MS, and 4.40-MS indicate 1.10, 2.20, and 4.40 g·L−1 MS, respectively; (d) LED
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to the combination of 5  mg·L−1 KIN × ¼ MS × 80.0% 
R-LED, more shoots (5.75) were attributed to 10 mg·L−1 
KIN × ¼ MS × 80.0% R-LED combination. On the other 
hand, STN-468 responded differently, and the maximum 
shoot count was attributed to the combination of 10 
mg·L−1 KIN × MS with 0.05 mg·L−1 KIN × 75.0% R-LED. 
Similarly, both cultivars induced minimum shoots under 
different combinations, and recorded as 3.00 shoots for 
GSN-12 under 20 mg·L−1 KIN × MS with 0.05 mg·L−1 

KIN × 66.67% R-LED. Whereas, minimum shoot count 
(2.25) of STN-468 were linked with a combination of 10 
mg·L−1 KIN × MS × 75.0% R-LED. These results enlighten 
the significance of cultivar, culture medium, and culture 
condition on in vitro shoot induction of cotton.

Factorial regression analysis
Factorial regression analysis was used for investigat-
ing the impact of input variables on shoot counts by 

Table 1 Effect of cultivars,preconditioning dosage, culture medium, and LED on in vitro shoot count of cotton

PrC preconditioning medium; 5, 10, 20 indicate the concentration (mg·L−1) of KIN; PoC postconditioning medium, LED light emitting diodes, StDev standard deviation, 
CI confidence interval, R red, B blue

PrC PoC LED (R:B) GSN- 12 STN- 468

Mean StDev 95% CI Mean StDev 95% CI

5 MS 4:1 5.75 ABCDEF 0.050 (5.087; 6.413) 5.00 CDEFGHI 0.100 (4.337; 5.663)

5 MS 3:1 4.75 CDEFGHIJ 0.100 (4.087; 5.413) 4.25 EFGHIJKL 0.250 (3.587; 4.913)

5 MS 2:1 5.25 CDEFGH 0.010 (4.587; 5.912) 3.00 IJKL 0.050 (2.337; 3.663)

5 ½ MS 4:1 6.75 ABC 0.750 (6.087; 7.413) 2.75 JKL 0.500 (2.087; 3.413)

5 ½ MS 3:1 5.00 CDEFGHI 1.000 (4.337; 5.663) 5.00 CDEFGHI 0.000 (4.337; 5.663)

5 ½ MS 2:1 5.00 CDEFGHI 0.000 (4.337; 5.663) 2.75 IJKL 0.750 (2.087; 3.413)

5 ¼ MS 4:1 7.75 A 0.250 (7.087; 8.413) 5.00 CDEFGHI 1.000 (4.337; 5.663)

5 ¼ MS 3:1 4.25 EFGHIJKL 0.250 (3.587; 4.913) 4.50 DEFGHIJK 0.300 (3.837; 5.163)

5 ¼ MS 2:1 4.25 EFGHIJKL 0.050 (3.587; 4.913) 4.00 EFGHIJKL 0.250 (3.337; 4.663)

5 0.05 mg·L−1 KIN 4:1 5.75 ABCDEF 0.250 (5.087; 6.413) 3.75 FGHIJKL 1.000 (3.087; 4.413)

5 0.05 mg·L−1 KIN 3:1 3.75 FGHIJKL 0.050 (3.087; 4.413) 3.50 GHIJKL 0.200 (2.837; 4.163)

5 0.05 mg·L−1 KIN 2:1 4.25 EFGHIJKL 0.100 (3.537; 4.863) 3.00 IJKL 2.000 (2.340; 3.660)

10 MS 4:1 6.50 ABCD 0.100 (5.837; 7.163) 2.50 KL 0.500 (1.837; 3.163)

10 MS 3:1 4.50 DEFGHIJK 0.010 (3.837; 5.163) 2.25 L 0.250 (1.587; 2.913)

10 MS 2:1 4.75 CDEFGHIJ 0.090 (4.087; 5.413) 3.00 IJKL 0.300 (2.337; 3.663)

10 ½ MS 4:1 6.50 ABCD 0.500 (5.837; 7.163) 5.50 BCDEFG 0.100 (4.837; 6.163)

10 ½ MS 3:1 5.75 ABCDEF 0.050 (5.087; 6.413) 4.25 EFGHIJKL 0.010 (3.587; 4.913)

10 ½ MS 2:1 5.00 CDEFGHI 0.010 (4.337; 5.663) 2.50 KL 1.000 (1.837; 3.163)

10 ¼ MS 4:1 5.75 ABCDEF 0.750 (5.087; 6.413) 4.75 CDEFGHIJ 0.750 (4.087; 5.413)

10 ¼ MS 3:1 5.25 CDEFGH 0.250 (4.587; 5.913) 4.750 CDEFGHIJ 0.050 (4.087; 5.413)

10 ¼ MS 2:1 4.00 EFGHIJKL 0.000 (3.337; 4.663) 4.00 EFGHIJKL 0.000 (3.337; 4.663)

10 0.05 mg·L−1 KIN 4:1 7.50 AB 0.100 (6.837; 8.163) 2.75 JKL 0.030 (2.087; 3.413)

10 0.05 mg·L−1 KIN 3:1 4.75 CDEFGHIJ 0.500 (4.087; 5.413) 6.00 ABCDE 2.000 (5.340; 6.660)

10 0.05 mg·L−1 KIN 2:1 6.75 ABC 0.750 (6.087; 7.413) 3.00 IJKL 0.500 (2.337; 3.663)

20 MS 4:1 4.75 CDEFGHIJ 0.250 (4.087; 5.413) 3.50 GHIJKL 0.200 (2.837; 4.163)

20 MS 3:1 4.33 EFGHIJK 0.080 (3.667; 4.993) 3.00 IJKL 0.000 (2.337; 3.663)

20 MS 2:1 4.00 EFGHIJKL 1.000 (3.337; 4.663) 2.50 KL 0.500 (1.837; 3.163)

20 ½ MS 4:1 5.00 CDEFGHI 0.100 (4.337; 5.663) 4.50 DEFGHIJK 0.500 (3.837; 5.163)

20 ½ MS 3:1 3.50 GHIJKL 0.020 (2.837; 4.163) 4.00 EFGHIJKL 0.250 (3.337; 4.663)

20 ½ MS 2:1 4.25 EFGHIJKL 0.500 (3.587; 4.913) 4.25 EFGHIJKL 0.500 (3.587; 4.913)

20 ¼ MS 4:1 4.00 EFGHIJKL 0.100 (3.337; 4.663) 5.67 BCDEF 1.258 (5.004; 6.329)

20 ¼ MS 3:1 4.25 EFGHIJKL 0.050 (3.587; 4.913) 4.75 CDEFGHIJ 0.050 (4.087; 5.413)

20 ¼ MS 2:1 4.00 EFGHIJKL 0.000 (3.337; 4.663) 3.25 HIJKL 0.150 (2.587; 3.913)

20 0.05 mg·L−1 KIN 4:1 5.50 BCDEFG 1.500 (4.837; 6.163) 5.50 BCDEFG 0.500 (4.837; 6.163)

20 0.05 mg·L−1 KIN 3:1 3.50 GHIJKL 0.250 (2.837; 4.163) 5.33 CDEFG 0.170 (4.667; 5.993)

20 0.05 mg·L−1 KIN 2:1 3.00 IJKL 0.300 (2.337; 3.663) 5.00 CDEFGHI 1.000 (4.337; 5.663)
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considering the significant factors and their level by 
constructing Pareto charts and normal plots. Results of 
the Pareto chart revealed the fitted line score of 1.984 
for both cultivars (Fig. 2a, b). Results of cotton STN-468 
revealed the significant impact of postconditioning (B), 
LED (C), and preconditioning × post-conditioning (AB). 
Whereas, preconditioning (A), ABC, AC, and BC were 
non-significant and showed scores of less than 1.984. 
Considering the significance order, it was registered as 
B > C > AB > A > ABC > AC > BC (Fig. 2a). On the other 
hand, a totally different pattern was registered for GSN-
12; the order of C > A > AC > BC > B > AB > ABC was reg-
istered, and only C and A input variables were significant 
and exhibited similar impact on shoot counts (Fig.  2b). 
The significance shown by Pareto chart was further inves-
tigated by normal plots (Fig. 2c, d), which reflects the sig-
nificance in terms of the relationship (direct proportional 
or inverse proportional impact) between input variables 
and respective output variables. Results of STN-468 
illustrated the positioning of B and AB variables on the 
left side of the fitted line (Fig. 2c). Whereas factor C was 
positioned on the right top of the line with a significant 
level adjusted at around 90.0%. The significance level in 
terms of percentage was 20.0% for AB and 100% for the B 

variable, reflecting the weightage of given input param-
eters on the shoot counts. On the contrary, C and A fac-
tors were significant and placed on the right and left side 
of the standard line for GSN-12, respectively (Fig. 2d).

Results of contour plot and surface plot of interac-
tion of two input factors for STN-468 revealed 5.0–5.2 
shoot counts from 17.6–20.0 mg·L−1 preconditioning 
KIN × 0.05–0.40 mg·L−1 postconditioning KIN (Fig.  3a, 
d). The combination of AC (preconditioning KIN × LED) 
optimized the maximum shoot count of 4.4–4.5 from 
14.5–20.0 mg·L−1 preconditioning KIN × 78−80% R-LED 
(Fig.  3b, e), whereas BC combination was optimized as 
4.5–5.0 shoots from 0.05–1.72 mg·L−1 postcondition-
ing KIN × 73.0−80.0% R-LED (Fig.  3c, f ). Investigation 
of GSN-12 optimized the shoot count range of 4.5–4.8 
from 6.25–14.0 mg·L−1 preconditioning KIN × 0.05–4.44 
mg·L−1 postconditioning KIN (Fig. 4a, d). The combina-
tion of AC was registered as 5.0–16.0 mg·L−1 precondi-
tioning KIN × 79−80% R-LED for maximum shoot count 
of 6.0–6.5 (Fig. 4b, e). A similar number of shoot counts 
can also be attained from 0.05–4.44 mg·L−1 postcondi-
tioning KIN × 79−80% R-LED (Fig.  4c, f ). It is evident 
from the results that exposing cotton to 80% red + 20% 
blue lighting leads to maximum shoot counts.

Fig. 2 Pareto chart (a-b) and normal plot (c-d) analysis of shoot counts of in vitro regenerated cotton
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Results were further optimized by using a response 
optimizer statistical tool for optimizing the best input 
condition for achieving maximum shoot count. All three 
input parameters were optimized. Results revealed a 
similar requirement of postconditioning of MS with 
0.05 mg·L KIN and 80.00% R-LED to induce a maximum 
shoot count of 5.83 for STN-468, and 6.35 for GSN-12, 
respectively (Table 2). However, the preconditioning dose 
requirements were different for the two cultivars (20 

mg·L−1 KIN for STN-468, and 5.0 mg·L−1 KIN for GSN-
12). The results showed clearly  that all statistical tools 
optimized the better performance of 80.0% R-LED for 
yielding maximum shoot counts for both cultivars.

Application of ML modeling
The data generated were thereafter validated and pre-
dicted by ML models. R2 for the tested models were very 

Fig. 3 Contour plots (a-c) and surface plots (d-f) for in vitro regenerated shoot counts of STN-468

Fig. 4 Contour plots (a-c) and surface plots (d-f) for in vitro regenerated shoot counts of GSN-12



Page 9 of 14Özkat et al. Journal of Cotton Research            (2025) 8:19  

close and ranged from 0.69  to  0.71, with the maximum 
R2 (0.71) recorded from the MLP model, followed by RF 
(0.70) and XGBoost (0.69). The results of actual and pre-
dicted scores of shoot counts are presented in Fig.  5. A 
1:1 line in ML is used in regression analysis to compare 
the  predicted values with actual values. It represents a 
perfect agreement between the predicted and actual 
outcomes. Deviations from this line indicate prediction 

errors. The line is also used in residual analysis to visu-
alize how well a model fits the data. The performance 
metrics of different models ranged from 0.477 to 0.515 
for MSE, 0.372 to 0.414 for MAE, 10.116% to 10.976% for 
MAPE, 0.0194 to 0.0204 for MSLE, and 0.078 to 0.146 
for MedAE (Table 3). The minimum scores for MSE and 
MSLE were attributed to the MLP model, whereas, mini-
mum MAE, MAPE, and MedAE were associated with 
RF model. Overall, MLP exhibited better performance, 
and all three models exhibited very similar performance. 
The  RF model outperformed the  MLP and XGBoost 
models in terms of data prediction and validation.

Discussion
The establishment of in vitro propagation protocol is reg-
ulated by the combinations of variable physical, chemical, 
and biological factors. The selection of proper cultivar, 
culture medium, and culture conditions are direly deci-
sive for establishing successful and repeatable in  vitro 
regeneration protocol of recalcitrant plants (Wang et al. 
2011; Parris et al. 2012). Cotton is believed to be one of 
the most recalcitrant plants to manipulate, as multi-
ple shoot induction in cotton is challenging (Pathi et al. 

Table 2 Optimizing input variables for individual cultivars using 
Response optimizer

SE standard error, CI confidence interval

Optimization STN-468 GSN-12

Preconditioning KIN concen-
tration/(mg·L−1)

20.00 5.00

Postconditioning KIN con-
centration/(mg·L−1)

0.05 0.05

R-LED /% 80.00 80.00

Shoot count 5.83 6.35

SE fit 0.37 0.31

95% CI (5.099; 6.561) (5.735; 6.964)

Fig. 5 Actual and predicted values of shoot count of different ML models (a) MLP, (b) XGBoost, and (c) RF model

Table 3 Performance metrics for the validation of ML models

RF random forest, XGBoost extreme gradient boosting, MLP multilayer perceptron, R2 coefficient of determination, MSE mean squared error, MAE mean absolute error, 
MAPE mean absolute percentage error, MSLE mean square log error, MedAE median absolute error

ML models R2 MSE MAE MAPE MSLE MedAE

RF 0.70 0.492 0.372 10.116 0.0201 0.078

XGBoost 0.69 0.515 0.414 10.976 0.0204 0.146

MLP 0.71 0.477 0.402 10.888 0.0194 0.137
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2013). Therefore, it is always a priority to induce repro-
ducible and efficient multiple shoots for cotton breeding 
programs (Khan et  al. 2023). Optimization of protocol 
can be achieved by using traditional statistical tools or 
employing modern optimizing tools like AI-based mod-
els. In this study, a novel protocol with multiple shoot 
induction in cotton followed by successful rooting and 
acclimatization of two commercially grown cotton culti-
vars in Türkiye was established by exposing explants to 
high KIN concentrations. Thereafter, different culture 
conditions were optimized by using various optimizing 
tools like contour plots, surface plots, and response opti-
mizers. In the end, the attained data were validated and 
predicted through ANN and ML models.

Explant orientation (the  placement of explant and 
contact with a  culture medium) is highly significant, 
but neglected factors that regulate in  vitro regeneration 
(Bhatia et  al. 2005; García-Luis et  al. 2006). The pre-
conditioned explants with KIN were placed on the cul-
ture medium in a special position (angelized position of 
30–60°) rather than placing explants horizontally or ver-
tically. The reason behind placing it in a certain position 
was the initial observations taken in other experiments 
(data not provided), which resulted in minimum necro-
sis. For a total of eight weeks, the explants were continu-
ally grown on the same medium. There is the possibility 
of hindering metabolite movements and minimizing the 
leakage of phenolic compounds in the culture medium 
due to explant orientation, which in turn leads to high 
shoot regeneration frequency. A study by García-Luis 
et  al. (2006) revealed the significant impact of explant 
orientation on callus growth and shoot induction of 
Troyer citrange. Similarly, the positive impact of explant 
orientation for the inhibition of phenolic compounds has 
been documented for pistachio by placing explants at a 
60° angle (Nezami et al. 2015).

The incorporation of gelling agents in the culture 
media is important for in vitro regeneration and multiple 
shoot induction. Agar is the most preferred gelling agent; 
however, certain issues like impurities, growth inhibi-
tory compounds, and vitrification are associated with 
it in plant tissue culture (Nairn et  al. 1995). The incor-
poration of phytagel as an alternative gelling agent can 
address these concerns owing to its high ash content and 
low impurities (Huang et  al. 1995). Relatively low leak-
age of phenolic compounds was observed in the culture 
medium, which in turn resulted in prolonged culture 
with avoidance of the subculture. The positive impact of 
phytagel might be due to the provision of a more suit-
able environment (hydration and nutrition) to explants 

and controlling the leakage of phenolic compounds in the 
regeneration medium (Kumar et al. 2003).

The physical state of the explants prior to culture 
controls the entire in  vitro regeneration process. In 
this research, explants were initially exposed to higher 
KIN concentrations, followed by culturing on the  basal 
medium (different concentrations of MS and KIN) under 
different R:B LED combinations. Preconditioning (pre-
treatment) is exposing explants to higher cytokinin lev-
els for a certain period. Using this approach will cause 
recalcitrant crops to regenerate more quickly and induce 
multiple shoots (Kumari et  al. 2017). The effectiveness 
of the technique is the rapid and more cell division of 
explants at the initial stage, followed by shoot induction 
on media supplemented without any PGR or containing 
low concentrations of cytokinin or cytokinin-auxin com-
bination. There was no sign of callus induction on the 
preconditioned with a high concentration of KIN. Con-
trarily, callus induction from the basal end of the explants 
in response to preconditioning has been documented in 
other crops like chickpeas (Aasim et al. 2013). However, 
other factors also regulate the whole morphogenesis. In 
this study, single shoot induction from explants in both 
cultivars was initiated simultaneously after approxi-
mately 2–3 weeks and it took 4–5 weeks for multiple 
shoots, resulting in 100% shoot regeneration frequency. 
Previous studies also revealed that preconditioning had 
no negative impact on regeneration frequency (Kumari 
et  al. 2017). The findings demonstrate the usefulness of 
preconditioning doses in producing multiple shoots and 
corroborate with the earlier research (Tang et  al. 2012; 
Kumari et al. 2017).

Results further illustrated the significance of geno-
types, as the in vitro regeneration performance of GSN-
12 was better than STN-468. The results confirmed 
previous studies that emphasized the role of cotton 
genotype or cultivar in regulating in  vitro regeneration 
(Sakhanokho et al. 2004; Khan et al. 2010; Pushpa et al. 
2010). However, proper selection of PGR with relative 
dose and exposure time along with explants also plays a 
role. KIN is a naturally found cytokinin used for induc-
ing in vitro regeneration at relatively low concentrations. 
The type and concentration of the  basal medium along 
with PGR are the prerequisites for inducing multiple 
shoots, especially for recalcitrant crops like cotton. The 
culture medium (postconditioned medium) for precon-
ditioned explants is highly significant for inducing mul-
tiple shoots with high regeneration frequency. Therefore, 
postconditioned mediums are generally enriched with 
low cytokinin or cytokinin-auxin combinations (Aasim 
et  al. 2013). In this research, preconditioned explants 
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were kept on media supplemented with variable MS con-
centrations without any PGR, and MS medium with a 
minute amount of KIN (0.05 mg·L−1). Concentration of 
the MS culture medium also regulated the in vitro regen-
eration behaviors of cotton, and a significant impact was 
noted. On the contrary, a negative impact of low MS con-
centration on shoot induction has been documented for 
Phytolacca dioica (El-Afry et al. 2017), Ophiorrhiza pros-
trata (Gopalakrishnan et al. 2018), and Eryngium vivipa-
rum (Ayuso et al. 2019). The difference is supposed to be 
related to the specific demand for macro- and micronu-
trients of each genotype. The results also revealed that 
full MS was more detrimental for inducing shoots, and 
this restriction can be overcome by the provision of KIN. 
It has been established that reduced MS concentration 
in the culture media promotes somatic embryogenesis 
in cotton (Kumria et  al. 2003). The usage of LED light, 
either alone or in conjunction with R:B LED light at vari-
ous ratios, has been shown to have a  significant impact 
on in  vitro germination and regeneration of different 
plants (Özcan et  al. 2023). The study revealed the posi-
tive impact of R-LED on somatic embryogenesis in cot-
ton. Whereas, the significance of the balanced use of LED 
(R:B = 1:1) for gaining the highest growth and morpho-
genesis in cotton has already been documented (Li et al. 
2010). Within the scope of our study, shoot regeneration 
increased as the ratio of red LED light increased. The 
findings underscore the synergistic role of explant orien-
tation, preconditioning treatments, and culture medium 
composition in overcoming recalcitrance in cotton for 
in vitro regeneration, paving a way for more effective cot-
ton breeding and genetic improvement programs.

Pareto charts and normal plots are powerful statisti-
cal tools to estimate the significant impact in terms of 
ranking or placing the input variables in order. Whereas 
normal plots illustrate the relationship between the input 
and output variable in terms of direct proportional or 
inverse proportional impact with efficiency expressed in 
percentage (Katirci 2015). The use of both tools has been 
increasing in plant sciences and registered for in  vitro 
regeneration (Aasim et  al. 2024b), nanoparticle biosyn-
thesis (Keijok et al. 2019), and indole acetic acid genera-
tion (Myo et al. 2019). Results of both cultivars exhibiting 
different responses to input variables were confirmed 
with contour and surface plots in this study. Both plots 
are highly significant and powerful tools for optimiz-
ing two input variables for a desired output target by 
splitting the data and expressing it with different colors 
(Kasman et  al. 2019; Younis et  al. 2023). The results of 
contour plots optimized the two input variables and their 
impact on generating the final shoot counts. It has been 
proven that both charts can be used for phytoremedia-
tion investigations (Jaskulak et al. 2020; Mohamad Thani 

et al. 2020) and in vitro propagation studies (Özcan et al. 
2023).

The outcomes of the one-way ANOVA showed how 
input variables significantly affected the shoot number 
of two distinct cotton cultivars. Nevertheless, the appli-
cation of traditional methods is unable to capture the 
apparent impact of input factors on the final output vari-
ables. Application of AI-based ML/ANN models for vali-
dating, predicting, and optimizing the data set through 
inferring the connection between the variables (input 
and output) has been documented (Balasubramani et al. 
2020; Razzaghi et  al. 2018). The data were exposed to 
several ML (RF, XGBoost) and ANN models (MLP) in 
order to predict and verify the accuracy. By considering 
the six measured performance criteria, all tested models 
predicted the results equally and precisely. These perfor-
mance metrics are highly significant for evaluating the 
performance of the models. Among the performance 
metrics, R2 is the most widely used and well-established 
metric for data prediction. However, the use of multi-
ple metrics is generally recommended and used for bet-
ter modeling performance (Özcan et  al. 2023; Wu et  al. 
2023). A high R2 value of 1 or nearly 1 combined with low 
values of other metrics indicates that the model is doing 
better (Arab et al. 2016). Comparably, RF model predicts 
outcomes better than alternative models for maximizing 
in vitro hemp callus formation and development (Hesami 
et al. 2021). On the other hand, in vitro regeneration of 
common bean has shown that MLP model performs 
better than RF and XGBoost models. Due to their wide-
spread use in plant sciences and biotechnology, these 
models have all become quite prominent recently. The 
studies conducted for GSN-12 and STN-468 cultivars 
are very limited in the literature, and studies on in vitro 
germination and regeneration used for genetic transfor-
mations have been documented by various researchers 
(Bakhsh et  al. 2016). Our results are highly significant 
and can be used for future biotechnological applications 
in cotton (Khan et al. 2023).

Conclusion
In this study, an effective in  vitro regeneration strategy 
involving shoot induction, roots, and acclimation was 
established. The findings demonstrated the influence of 
individuals and combinations of various external factors 
on shoot counts of two distinct cotton cultivars grown 
in Türkiye. The response of GSN-12 was far better than 
STN-468 and yielded more shoots. Application of 10 
mg·L−1 KIN (preconditioning) for 10 days was superior 
to other doses. Provision of 80.0% R-LED was beneficial 
for both cultivars. The impact of combinations of factors 
revealed that both cultivars require MS with 0.05 mg·L−1 
KIN and 80.0% R-LED but different preconditioning KIN 
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doses to generate more shoots. The use of AI/ML models 
accurately predicted and validated the outcomes. Results 
illustrate the possible use of other recalcitrant cotton cul-
tivars and may be successfully used for the application 
of biotechnological tools to improve cotton genotypes. 
This study suggests that integrating advanced AI and ML 
techniques could improve cotton tissue culture proto-
cols. Deep learning algorithms and complex predictive 
models could optimize regeneration strategies for recal-
citrant cotton cultivars. These models could predict and 
enhance external factors, improving shoot induction and 
acclimatization processes.
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