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Abstract 

Background GOSSYM is a mechanistic, process-based cotton model that can simulate cotton crop growth 
and development, yield, and fiber quality. Its fiber quality module was developed based on controlled experiments 
explicitly conducted on the Texas Marker-1 (TM1) variety, potentially making its functional equations more aligned 
with this cultivar. To assess the model’s broader applicability, this study analyzed fiber quality data from 40 upland 
cotton cultivars, including TM1. The measured fiber quality from all cultivars was then compared with the model-
simulated fiber quality.

Results Among the 40 upland cultivars, fiber strength varied from 28.4 cN·tex−1 to 34.6 cN·tex−1, fiber length ranged 
from 27.1 mm to 33.3 mm, micronaire value ranged from 2.7 to 4.6, and length uniformity index varied from 82.3% 
to 85.5%. The model simulated fiber quality closely matched the measured values for TM1, with the absolute percent-
age error (APE) being less than 0.92% for fiber strength, fiber length, and length uniformity index and 4.7% for micro-
naire. However, significant differences were observed for the other cultivars. The Pearson correlation coefficient (r) 
between the measured and simulated values was negative for all fiber quality traits, and Wilmotts’s index of agree-
ment (WIA) was below 0.45, indicating a strong model bias toward TM1 without incorporating cultivar-specific param-
eters. After incorporating cultivar-specific parameters, the model’s performance improved significantly, with an aver-
age r-value of 0.84 and WIA of 0.88.

Conclusions The adopted methodology and estimated cultivar-specific parameters improved the model’s simula-
tion accuracy. This approach can be applied to newer cotton cultivars, enhancing the GOSSYM model’s utility and its 
applicability for agricultural management and policy decisions.
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Background
Cotton fiber quality is pivotal in market profitability 
for both cotton growers and the textile industry (Liu 
et  al.  2023). Cotton fiber quality, including fiber length, 
also known as upper half mean length (UHML), fiber 
strength, micronaire, length uniformity index, color 
grade, etc., affects yarn (hairiness, evenness, strength, 
and spinning efficiency) and fabric performance (appear-
ance, strength, and pilling). Fiber length refers to the 
average length of the 50% longest fibers by weight (Krifa 
2006). The length uniformity index represents the fiber 
length distribution and is obtained as a ratio between 
the mean length of the fibers and the UHML of the fib-
ers (Ramey et al. 1989). Fiber strength expressed in cen-
tinewtons per tex (cN·tex−1) is the force required to break 
a bundle of fibers that is one tex unit in size, where a tex 
unit is equal to the weight in grams of 1 000 m of fiber. 
Fiber strength is vital for advanced spinning technologies 
and affects the hairiness and strength of both the yarn 
and fabric (Bradow et  al.  2010). Micronaire (an indirect 
measure of fiber fineness and maturity) influences fiber 
processing and dyeing consistency (Rodgers et al. 2017). 
Color grade measures fiber’s reflectance, brightness, and 
yellowness, which influence dyeing properties (Xu et  al. 
1998). Growers always aim to produce the best quality 
cotton to gain market profitability (Liu et al. 2023). In the 
USA, each bale of cotton produced is graded based on 
the quality attributes as per the quality standards/charts 
regulated by the United States Department of Agricul-
ture-Agricultural Marketing Service (USDA-AMS) (Pin-
namaneni et al. 2021). High-quality cotton, which meets 
the USDA’s grading standards, is eligible for premium 
pricing in the markets. Conversely, low-quality fiber, 
often resulting from adverse weather conditions, pest 
damage, improper harvesting and ginning practices, etc., 
may receive discounted prices.

Cotton fiber quality is influenced by cultivars, environ-
mental conditions, and management practices (Lokhande 
et  al.  2014; Mehran et  al. 2023; Baghyalakshmi et  al. 
2024). For instance, a reduction of 12% in the micronaire 
was observed when shifting from rainfed treatment to 
irrigated treatment (Pinnamaneni et al. 2021). A study on 
the contribution of environment and genotype to cotton 
yield and quality, using seven cotton cultivars across 33 
environments, showed that both factors influence fiber 
quality, with the environment playing a more significant 
role (contribution ranging from 47% to 80%) in governing 
it (Snider et al. 2013).

Crop simulation models that can simulate the interac-
tive effect of cultivar, environmental, and management 
conditions have an important role in agricultural man-
agement (Thorp et al. 2014). Since the 1980s, numerous 
cotton simulation models have been developed, such as 

GOSSYM (Baker et al. 1983), OZCOT (Hearn et al. 1985; 
Hearn 1994), CSM-CROPGRO-Cotton (Hoogenboom 
et  al.  1992), COTCO2 (Wall et  al. 1994), and Cotton2K 
(Marani 2004). Among the existing cotton simulation 
models, GOSSYM stands out as one of the most widely 
validated and applied in on-farm decision-making and 
management practices (Lemmon 1986; Reddy et  al. 
1995b, 2002, 2003, 2008). It is a mechanistic, process-
level simulation model that estimates crop growth, devel-
opment, and yield based on the environmental conditions 
(solar radiation, temperature, humidity, rain, wind,  CO2, 
etc.), soil physical and hydraulic properties, and manage-
ment practices (irrigation, fertilizer application, tillage) 
(Baker et al. 1972, 1983; Whisler et al. 1986). It has also 
been applied in policy areas across the cotton-growing 
areas (Doherty et  al. 2003; Liang et  al.  2012a, 2012b). 
Over time, GOSSYM has been refined and improved 
through insights gained from laboratory experiments, 
field trials, and controlled-environment studies (Landivar 
et  al.  1983; Boone et  al. 1993; Reddy et  al. 1995a, 1997, 
2003; Staggenborg et al. 1996; Baker et al. 2015). Recent 
enhancements to GOSSYM include improved estima-
tions of photosynthesis and transpiration by integrat-
ing the Farquhar biochemical model and Ball-Berry leaf 
energy balance model (Beegum et  al. 2023b). A notable 
addition to the GOSSYM model is a fiber quality simula-
tion module, which is the first of its kind among process-
based cotton models (Beegum et al. 2023a, 2024b).

The GOSSYM model can simulate four major fiber qual-
ity traits: fiber strength, length, micronaire, and length uni-
formity index. The mathematical functional relationships 
between these four fiber quality metrics and the major 
factors influencing fiber quality (temperature, water, and 
nutrient status) used in the developed model were estab-
lished based on several sets of control chamber experiments 
(Beegum et al. 2023a). One of the main highlights of all the 
experiments was that they were all performed on the same 
cotton cultivar, Texas Marker-1 (TM1), a common culti-
var used as a reference genome in cotton research (Kohel 
et  al.  1970; Beegum et  al. 2023a; Sreedasyam et  al.  2024). 
Therefore, the fiber quality module integrated into GOS-
SYM may be biased towards or more predictive of the TM1 
variety. Thus, the model needs testing for its performance 
with other cultivars. If the model doesn’t simulate well for 
other cultivars, cultivar-specific parameters in the fiber 
quality module in GOSSYM will need to be developed.

The study aims to assess fiber quality variability among 
different cotton cultivars and to evaluate and improve the 
GOSSYM model’s fiber quality simulations. The specific 
objectives are (a) to analyze the variability in fiber strength, 
fiber length, micronaire, and length uniformity index 
among different cotton cultivars, including the TM1 vari-
ety used for model development; (b) to evaluate the fiber 
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quality module in GOSSYM for its accuracy in simulating 
fiber quality across cultivars; and  (c) to estimate cultivar-
specific parameters based on observed variability in fiber 
quality.

Materials and methods
Cotton fiber quality module in GOSSYM
Fiber quality estimation in the GOSSYM model follows a 
two-step algorithm. First, the model estimates the poten-
tial fiber quality, which is a function of temperature and 
represents fiber quality under optimal conditions without 
other stresses. Next, it calculates the actual fiber quality 
by modifying the potential fiber quality based on stress 
factors (water and nutrient stresses). Water and nutri-
ent stresses are represented as functions of leaf water 
potential and leaf nitrogen concentration, respectively 
(Lokhande et al. 2014; Beegum et al. 2023a). In the model, 
the fiber quality traits (fiber strength, length, micronaire, 
and length uniformity index) are estimated for each of the 
cotton bolls, and the plant-level quality is estimated as a 
mass-weighted average of the fiber quality of individual 
bolls (Beegum et al. 2023a).

Obtaining data for analyzing fiber quality variability 
among cotton cultivars
Data for analyzing fiber quality variability among cotton 
cultivars (a total of 40), including the TM1 variety, was 
obtained as part of another experimental study that was 
focused on quantifying the growth and development of 
different cotton cultivars (Beegum et  al. 2024a, 2024c). 
All cultivars were grown under the same environmental 
and management conditions to isolate variability in the 
fiber quality as a genetic characteristic of the cultivar and 
exclude the influence of other factors. All cultivars were 
grown under non-limiting water and nutrient conditions.

This study was conducted in 2022 at the Environmental 
Plant Physiology Laboratory at the Mississippi Agricul-
tural and Forestry Experimentation Station, Mississippi 
State University, Mississippi, USA (33°28′ N, 88°47′ W). 
The details of the experiment’s design can be found in 
studies by Beegum et al. (2024a; 2024c). The data set on 
fiber quality was from a total of 40 different upland cot-
ton cultivars with three replications and five plants per 
replication. The 8–10 cotton bolls per plant were hand-
picked from the first and second positions (closest to the 
mainstem). This was done to eliminate age-related fac-
tors and any variations in the duration from flowering 
to boll opening that could impact the fiber quality. The 
cotton bolls were ginned at the Crop Science Research 
Laboratory, United States Department of Agriculture-
Agricultural Research Service (USDA-ARS), which has a 
Continental/Moss Gordin 10-saw, 10-inch diameter gin 

stand (Continental Eagle Corporation, USA), powered by 
3-phase 240-V electricity. Four major fiber quality traits 
(fiber strength, length, micronaire, and length uniform-
ity index) were assessed using high-volume instrumen-
tation (HVI) (Uster HVI 1000, Uster Technologies AG, 
Switzerland) at the Fiber and Biopolymer Research Insti-
tute, Texas Tech University. Fiber quality measurements 
included four readings for micronaire and ten each for 
fiber length and fiber strength in each replication. The 
mean of these values within each replication was used for 
analysis.

Evaluating fiber quality variability and cultivar‑specific 
parameters
The cultivar-specific fiber quality parameters were esti-
mated using the methodology developed by Beegum et al. 
(2024c). The first step was to run the GOSSYM model 
using the same environmental and management condi-
tions that prevailed during the experiments. Then, we 
compared the measured and simulated fiber quality values. 
Since the model was initially developed using the TM1 
cultivar, the first step was to compare the model-simulated 
quality for TM1 with the measured value to determine 
whether the model exhibited a bias toward this cultivar.

Based on the variation percentage observed between 
the measured and simulated fiber quality across all cot-
ton cultivars, they were grouped into categories. Since 
the parameters in the fiber quality functional equations 
act as multipliers, the cultivar-specific parameters were 
determined by scaling the variation in the measured and 
simulated values from the base parameter value of 1.0. 
A similar scaling procedure had previously been used 
in GOSSYM to estimate cultivar-specific parameters for 
several functions in GOSSYM, such as the time to square, 
time from square to open boll, time to flower, fruit loss, 
and plant height functions (Reddy et al. 1988).

To categorize cultivars, a bandwidth of ± 2.5% around the 
simulated values was first estimated. This facilitates setting 
a cultivar-specific parameter value of 1.0 for all cultivars that 
have their measured fiber quality values within this band 
(–2.5% to +2.5%). A band of ± 5%, ± 10%, ± 15%, etc., from 
the simulated values was not adopted because this would 
result in a larger band (–5% to +5%) close to the simulated 
values compared with subsequent bands. Starting from the 
±2.5% band, an additional 5% is added on either side (–7.5%, 
+7.5%) of the simulated values for fiber quality  traits. The 
calibrated values for the cultivars within +2.5% to +7.5% 
were set to 1.05, and within –2.5% to –7.5% were set to 0.95, 
which was based on the relative variation from a value of 1.0 
for parameters for cultivars within –2.5% to +2.5%. Simi-
larly, the calibrated values for the cultivars within +7.5% to 
+12.5% and within –7.5% to –12.5% were set to 1.10 and 



Page 4 of 15Beegum et al. Journal of Cotton Research            (2025) 8:18 

0.90, respectively. This approach determined cultivar-spe-
cific parameters based on the variation in the measured fiber 
strength, fiber length, micronaire, and length uniformity 
index from the GOSSYM simulated values.

Performance evaluation for GOSSYM model
The comparison of the measured and simulated fiber qual-
ity, as well as the performance of the methodology used for 
cultivar-specific parameter estimation, are evaluated based 
on the absolute percentage error (APE), root mean square 
error (RMSE), Willmott’s index of agreement (WIA), and 
Pearson correlation coefficient (r) (Willmott 1982). Lower 
APE values indicate higher accuracy in the simulation, 
as the simulated values are closer to the actual measured 
values. Lower RMSE values indicate the closeness of the 
measured values to the simulated ones. WIA reflects the 
degree to which the simulated variable accurately estimates 
the measured variable, with a value of 1.0 indicating per-
fect agreement and 0.0 indicating no agreement (Willmott 
1981). The r is a statistical measure that describes the extent 
to which the simulated and measured variables are linearly 
related. The values of r range from −1 to 1. An r value of 1 
indicates a perfect positive linear relationship, –1 indicates a 
perfect negative linear relationship, and 0 signifies no linear 
relationship. All the performance evaluations are performed 
in RStudio software. APE, RMSE, WIA, and r are estimated 
using Eqs. 1, 2, 3, and 4, respectively. The terms simulated 
and measured in the equations refer to simulated and meas-
ured data. The simulatedmean and measuredmean indicate 
the average of all the simulated and measured values in the 
dataset, respectively. The number of observed data points is 
represented by n, and i is the index representing each indi-
vidual data point in the dataset.
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Genetic algorithm‑based optimization for cultivar 
parameter estimation
To evaluate the cultivar-specific parameter estimation 
method adopted in this study (Beegum et al. 2024c) against 
other approaches, genetic algorithm (GA)-based optimi-
zation was used for a comparative analysis (Forrest 1996). 
The GA optimization began with an initialization step, 
where a population of cultivar-specific parameter values 
was randomly generated within the 0.5 to 1.5 range. This 
range was selected because the multiplier parameters in 
the GOSSYM typically fall within these bounds (Beegum 
et al. 2024c). Each solution was evaluated using the fitness 
function defined as the RMSE between the measured and 
simulated fiber quality indices. Selection, crossover, and 
mutation operations were performed over 10 generations or 
until an early stopping criterion was met. The early stopping 
criterion was triggered if the APE between the simulated 
and measured values fell below 2.5%, which aligned with 
the accepted variability threshold used when grouping cul-
tivars based on relative variability. The GA continued iterat-
ing until the maximum number of generations was reached 
or the early stopping condition was satisfied. The best solu-
tion from the final population was selected as the optimal 
parameter set for each cultivar. Parameter estimation using 
GA was conducted individually for each cultivar. The GA-
based optimization was implemented in RStudio software 
using the GA package.

Results
Fiber quality of the 40 cotton cultivars
The mean of the fiber strength, length, micronaire, and 
length uniformity index for 40 upland cotton cultivars 
was 30.98 cN·tex−1, 31.2 mm, 3.7, and 84.0%, respectively 
(Fig. 1a-d). Fiber strength varied from 28.4 cN·tex−1 to 34.6 
cN·tex−1, fiber length ranged from 27.1 mm to 33.3 mm, 
micronaire ranged from 2.7 to 4.6, and length uniformity 
index varied from 82.3% to 85.5%. The coefficient of vari-
ation was 4.5%, 4.17%, 13.3%, and 0.81% for fiber strength, 
length, micronaire, and length uniformity index, respec-
tively. A significantly negative correlation was observed 
between micronaire and fiber length (r = –0.51), as well as 
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between micronaire and fiber strength (r = −0.36) (Fig. 1e). 
A positive correlation was observed between fiber strength 
and length (r = 0.35) as well as between length uniformity 
index and micronaire (r = 0.43). A mild positive correlation 
was observed between the length uniformity index and 
fiber length (r = 0.018) (Fig. 1e).

Simulated and measured fiber quality 
without cultivar‑specific parameters
The  GOSSYM model-simulated and the measured fiber 
quality are shown in Fig.  2. First, the model-simulated 
value was compared with the measured fiber quality 
from the TM1 variety. The model accurately predicted 
the TM1 variety for all fiber quality traits. The simulated 
values for fiber strength, fiber length, micronaire, and 
length uniformity index for TM1  were 29.69 cN·tex−1, 
30.42 mm, 4.27, and  83.1%, while the measured values 
were 29.42 cN·tex−1, 30.44 mm, 4.48, and 83.7%, respec-
tively. The APE was less than 0.92% for fiber strength, 
fiber length, and length uniformity index and 4.7% for 
micronaire.

When comparing the absolute percentage difference 
between the measured and simulated values of fiber 
quality traits for all the cultivars, the maximum differ-
ence observed was 55.6%, which occurred in micronaire 
for the  cultivar PHY332 W3 FE. The r values between 
the simulated and measured data were negative, and 
WIA was less than 0.45 for all the fiber quality traits. 
The average absolute percentage difference between the 
measured and simulated values for fiber strength, fiber 
length, micronaire, and length uniformity index was 

5.4%, 3.8%, 16.7%, and 1.15%, respectively (Fig. 2). These 
results demonstrate that the GOSSYM model effectively 
simulates the fiber quality of the TM1 variety as antici-
pated. However, there is a considerable disparity between 
the simulated and measured fiber quality for other cul-
tivars, emphasizing the necessity for specific parameters 
tailored to each cultivar in order to simulate fiber quality 
accurately.

The classification of the cultivars based on the variabil-
ity between measured and GOSSYM-simulated quality 
values  is illustrated in Fig. 2a-d. Cultivars are organized 
into groups, represented by horizontal dashed lines, with 
each band forming a distinct category based on their 
variability. Once grouped, their corresponding cultivar-
specific parameters are determined (Fig. 2). The cultivar-
specific parameter values estimated using this approach 
are given in Table 1.

Simulated and measured fiber quality after incorporating 
the cultivar‑specific parameters
Once the cultivar-specific parameters were estimated 
based on the simulated and measured fiber quality 
(Table  1), the GOSSYM model was rerun by includ-
ing the cultivar-specific parameters. The simulated and 
measured fiber quality values after incorporating the cul-
tivar-specific parameters in the fiber quality functions of 
the GOSSYM model are presented in Fig. 3. The model 
simulated the fiber quality for all the cultivars with bet-
ter accuracy, as shown by higher values of r (−0.06 ver-
sus 0.84) and WIA (0.42 versus 0.88) and reduced RMSE 
compared with simulations without cultivar-specific 

Fig. 1 Variation in fiber strength (a), length (b), micronaire (c), length uniformity index (d) among all the cultivars, and (e) the distribution 
and Pearson correlation among the fiber quality traits. The horizontal line inside the box plot gives the median, and the red point represents 
the mean value. ***, **, *, and ., represent the significance at P < 0.001, P < 0.01, P < 0.05, P < 0.1, respectively
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Fig. 2 Simulated and measured values for fiber strength (a), fiber length (b), micronaire (c), and length uniformity index (d). Horizontal dashed lines 
represent the simulated values ± 2.5% (Sim. +2.5%, Sim. −2.5%), ± 7.5% (Sim. +7.5%, Sim. −7.5%), ± 12.5% (Sim. +12.5%, Sim. −12.5%), ± 17.5% (Sim. 
+17.5%, Sim. −17.5%), and ± 22.5% (Sim. +22.5%, Sim. −22.5%). RMSE root mean square error, r Pearson correlation coefficient, WIA Willmott’s index 
of agreement



Page 7 of 15Beegum et al. Journal of Cotton Research            (2025) 8:18  

parameters (Figs.  2  and  3). This highlights that the 
parameter estimation methodology efficiently improved 
fiber quality simulations.

Genetic algorithm‑based cultivar parameter estimation
Cultivar-specific parameters were estimated using a 
GA-based optimization technique. The measured and 
simulated fiber quality values  after incorporating the 
parameters estimated using the GA optimization tech-
nique into the  GOSSYM model  are shown in Fig.  4. 
A comparison of the parameters estimated using the 
method adopted in this study and the GA-based method 
is presented in Fig.  5. After incorporating parameters 
estimated using both methods into GOSSYM, the model 
equally improved the estimation ability. There were only 
very minor variations in the performance indices when 
comparing the efficiency of the methods, with the differ-
ence in the average of r and WIA between the methods 
being 0.025 and 0.015.

Discussion
Process-based crop models are essential for simulating 
crop growth and development under varying manage-
ment and climatic conditions, analyzing the effectiveness 
of different cropping systems, optimizing agricultural 
productivity, etc. (Boote et al. 1996). These models help 
assess interactions between cultivars, environmen-
tal factors, and management practices, aiding resource 
management and evaluating environmental impacts. Cul-
tivar-specific parameters are employed in these models to 
represent different cultivars and reflect their phenologi-
cal and physiological differences, thereby accurately sim-
ulating crop growth and development (Jones et al. 2011). 
Identifying these parameters typically requires extensive 
experimental data across multiple environmental and 
management conditions, which is time-consuming and 
resource-intensive. With the rapid development of new 
cultivars, it becomes increasingly challenging to develop 
cultivar-specific parameters for each new cultivar (Mon-
giano et  al. 2019). Despite these challenges, identifying 
these parameters is crucial for effectively utilizing crop 
models.

In crop models, cultivar-specific parameters can func-
tion as multipliers, modifiers of functional relationships, 
limits of variables, or arguments in equations. For exam-
ple, in the GOSSYM model, parameters for potential 

Table 1 Cultivar-specific parameter values for fiber strength, 
fiber length, micronaire, and length uniformity index for the 40 
cotton cultivars were estimated

Cultivar name Fiber 
strength

Fiber 
length

Micronaire Length 
uniformity 
index

AR9371 1.05 1.05 0.80 1.00

ARMOR9831 1.10 1.05 0.90 1.00

AU 1.10 1.05 0.75 1.00

C315 1.00 1.00 0.90 1.00

DG3519 1.05 1.10 0.75 1.00

DG3615B3XF 1.10 1.05 0.90 1.00

DP1522B2XF 1.05 1.00 0.90 1.00

DP1646 1.00 1.10 0.90 1.00

DP2012B3XF 1.10 1.05 0.95 1.00

DP2020B3XF 1.05 1.05 0.85 1.00

DP20R733B3XF 1.05 1.00 0.95 1.00

DP2115B3XF 1.00 1.05 0.8 1.00

DP2127B3XF 1.10 1.00 1.00 1.05

DP2143 NRB3XF 1.10 1.00 0.95 1.00

DP2239B3XF 1.05 1.10 0.75 1.00

DP90 1.10 1.05 0.85 1.00

FM958 1.05 1.05 1.00 1.00

FM966 1.15 1.00 0.80 1.00

HS26 1.05 0.95 1.00 1.00

M240 1.00 0.90 1.00 1.00

NG3195B3XF 1.05 1.00 0.90 1.00

NG3299B3XF 1.20 1.05 1.00 1.05

NG4190B3XF 1.05 1.05 0.90 1.00

PHY332 W3 FE 1.05 1.05 0.65 1.00

PHY360 W3 FE 1.10 1.05 0.90 1.00

PHY390 W3 FE 1.05 1.05 0.70 1.00

PHY400 W3 FE 1.10 1.05 0.75 1.00

PHY411 W3 FE 1.10 1.00 0.70 1.00

PHY443 W3 FE 1.10 1.00 0.75 1.00

PSC355 1.05 0.95 1.00 1.00

SG747 1.00 1.00 1.10 1.00

ST4595B3XF 1.00 1.05 0.90 1.00

ST474 1.00 1.00 1.05 1.00

ST5091B3XF 1.05 1.05 0.95 1.00

ST825 1.00 1.00 1.10 1.00

STNV4990 1.00 1.00 0.80 1.00

TM1 1.00 1.00 1.05 1.00

TP 1.00 0.95 1.05 1.00

UA222 1.05 1.05 0.75 1.00

UA48 1.15 1.10 0.80 1.00
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Fig. 3 Simulated and measured fiber strength (a), fiber length (b), micronaire (c), and length uniformity index (d) after incorporating 
cultivar-specific parameters in the fiber quality simulation module in the GOSSYM. RMSE root mean square error, r Pearson correlation coefficient, 
WIA Willmott’s index of agreement
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Fig. 4 Simulated and measured fiber strength (a), fiber length (b), micronaire (c), and length uniformity index (d) after incorporating 
cultivar-specific parameters identified using genetic algorithm-based optimization into GOSSYM. RMSE root mean square error, r Pearson correlation 
coefficient, WIA Willmott’s index of agreement
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Fig. 5 Cultivar-specific parameters for each of the 40 cultivars for fiber strength (a), fiber length (b), micronaire (c), and length uniformity index (d) 
estimated using parameter estimation methodology adopted in this study and genetic algorithm (GA)-based parameter estimation method
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cotton boll growth and stem growth act as limits, while 
parameters for the delay in fruiting node formation and 
cotton boll abscission act as arguments.

Cultivar-specific parameters in GOSSYM related to 
plant growth and development have already been deter-
mined and incorporated into GOSSYM for different cot-
ton cultivars, including the 40 examined in this study 
(Beegum et  al. 2024c). However, the cultivar-specific 
parameters related to fiber quality were not explored 
before. The cultivar-specific parameters in the fiber 
quality module act as multipliers, with the variety TM1 
serving as a baseline for functional equations. By car-
rying out experiments using 40 upland cotton cultivars 
alongside TM1 under the same environmental and man-
agement conditions, the present study was able to isolate 
the impact of cultivars on fiber quality variability and 
understand the relative variation in fiber quality with 
TM1.

The results revealed significant variability in fiber qual-
ity among different cultivars, with micronaire showing 
the highest variability, followed by fiber strength and fiber 
length, and length uniformity index exhibiting the least 
variability (Fig.  1). Significant variability in fiber quality 
among cultivars has also been reported by Teodoro et al. 
(2019). Consistent with this study, other studies have also 
observed that micronaire and fiber strength display the 
greatest genetic variability when comparing fiber quality 
across cotton cultivars (Meredith et al. 1973; Snider et al. 
2013). The observed negative correlation between micro-
naire and fiber strength can be attributed to fiber fine-
ness and the effect of the bundle testing method used in 
HVI testing. Lower micronaire values indicate finer fib-
ers, which result in a higher number of fibers within the 
bundle test (LaFave et al. 2023). During the fiber strength 
test, the increased fiber count allows for better force 
distribution, leading to higher measured fiber strength. 
Alternatively, fibers with higher micronaire values have 
thicker cell walls, reducing their flexibility and capability 
to withstand stress, thereby reducing their ability to bear 
loads without breaking (Bradow et al. 2000). The positive 
correlation between fiber strength and length observed 
in this study aligns with findings from other studies (Hus-
sain et  al. 2022). Understanding the impact of ginning 
on this relationship is essential, as stronger fibers resist 
breakage during ginning and retain their original length, 
while weaker fibers are more prone to breakage, reduc-
ing their length (Armijo et  al. 2013). This difference in 
response to ginning amplifies the correlation between 
strength and length after the ginning, making it more 
pronounced compared with before ginning, when fibers 
retain their original length.

The study first analyzed the variability between simu-
lated and measured cotton fiber quality without adding 

cultivar-specific parameters (Fig.  2). The model’s pre-
dictions closely aligned with the TM1 variety, reflecting 
the specificity of the functional relationships developed 
from experiments on this cultivar. However, significant 
deviations were observed when applying the model to 
other cultivars, highlighting the need for cultivar-specific 
parameter estimation (Fig. 2). Given that cultivar-specific 
parameters for fiber quality act as multipliers and all gov-
erning functions in the fiber quality module of GOSSYM 
were developed based on the same cultivar (TM1), it was 
reasonable to group the cultivars based on their relative 
variability from the simulated values and identify the 
cultivar-specific parameters. Incorporating these param-
eters into the GOSSYM model significantly improved 
the accuracy of fiber quality predictions across all evalu-
ated cultivars, as evidenced by increased r and WIA val-
ues and reduced RMSE (Figs. 2 and 3). The methodology 
focuses on reasonably estimating parameters by account-
ing for the crop model structure and functions rather 
than finding the most precise value to match observed 
fiber quality closely.

There are various existing calibration methods, such 
as GA (Pabico et al. 1999), sequential uncertainty fitting 
(Abbaspour et  al. 2004), generalized likelihood uncer-
tainty estimation (GLUE), parameter estimation and sen-
sitivity testing (PEST), weighted least squares methods, 
optimization algorithms, evolutionary and bio-inspired 
algorithms (Zuniga et  al. 2014), Bayesian approaches, 
and trial-and-error searches (Seidel et  al. 2018). Stud-
ies have used these methods to estimate cultivar-spe-
cific parameters in crop models. Most of these methods 
often treat the model as a black box, transforming inputs 
into outputs without considering the model structure or 
the functional relevance of the parameters being cali-
brated (Zhao et  al. 2014). These frequentist or Bayesian 
approaches can be used to estimate the cultivar-specific 
parameters for fiber quality. They could provide results 
similar to or better than the methodology adopted in this 
study, and the choice of method depends on user pref-
erence (Seidel et  al. 2018). This study did not focus on 
comparing existing calibration methods, as that was not 
its primary aim. However, a GA-based parameter optimi-
zation was performed to compare the methodology used. 
GA was chosen randomly, as the study does not explicitly 
focus on comparing parameter estimation procedures. 
Analysis showed that both methods improved the fiber 
quality simulations.

In GA, the convergence criteria (population size and 
iterations) or early stopping criteria can be adjusted 
for more accuracy. For example, in the GA-based opti-
mization carried out for this study, the early stopping 
criterion is triggered if the  APE between the simu-
lated and measured values falls below 2.5%, which can 
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be varied by the user. The methodology adopted in 
this study facilitates simulating fiber quality within an 
error margin of ± 2.5%. Similar to GA, the methodol-
ogy for determining cultivar-specific parameters based 
on grouping used in this study is also flexible, allowing 
users to adjust the error margin to suit their specific 
needs, ranging from broad agricultural assessments to 
more precise applications. The error margin is a choice 
of the model user, depending on the precision and 
accuracy required for the model’s purpose (Boote et al. 
1996).

Some general differences exist between the method 
adopted in this study and existing parameter calibration 
methods. Existing frequentist or Bayesian approaches do 
not inherently account for the model structure or func-
tional equations where the parameters are used. Studies 
have shown that it is unwise to make adjustments with-
out clearly understanding the parameters’ relevance and 
the model structure, as it is essential to know how each 
cultivar-specific parameter is used in the mathematical 
functions within crop models because individual param-
eters can be connected to the model structure and there 
can be interactions between parameters (Wallach et  al. 
2001; Zhao et al. 2014). In contrast to existing calibration 
methods, the methodology adopted in this study grouped 
the cultivars based on the relative variation from simu-
lated values and estimated cultivar-specific parameters 
for the groups. In this method, absolute variation is con-
sidered while grouping the cultivar, and cultivar-specific 
parameters are determined based on the relative differ-
ences in the group the cultivars belong to. This grouping 
approach allows for the assignment of the same cultivar-
specific parameters to all cultivars within a group, ena-
bling a structured crop database. For example, GOSSYM 
can identify a particular cultivar, determine its group, and 
assign the corresponding parameters for specific func-
tions. Existing approaches do not perform this grouping 
during parameter estimation. Each cultivar has differ-
ent values as opposed to the group approach (Table  1). 
Even if the parameter variation would have only resulted 
in minimal variation between the observed and simu-
lated values, each cultivar will have one parameter value, 
which the user can decide if they would like to group 
based on the similarity or have independent parameter 
values for each cultivar. Most calibration methods cali-
brate the cultivar-specific parameters of a cultivar at a 
time; the methodology adopted in this study identified 
the cultivar-specific parameters of all the cultivars cur-
rently growing simultaneously. Only some studies have 
looked into estimating the cultivar-specific parameters 
collectively by accounting for the relative variability in 
the growth and development of the cultivars.

In the present study, the cultivar-specific parameters 
for 40 cultivars are estimated, evaluated, and incorpo-
rated into the GOSSYM model. From a practical stand-
point, accurately predicting fiber quality for different 
cultivars using the GOSSYM model holds significant 
value for the cotton producers and industry. The model 
can be used to predict how fiber quality responds to vary-
ing environmental conditions and management practices 
(planting date, amount and timing of irrigation, fertilizer 
application, etc.), and can help optimize these factors to 
achieve superior fiber quality traits.

This study was the first detailed evaluation of the fiber 
quality module in the cotton simulation model, GOS-
SYM. It examined how well TM1 performed, considering 
that the model development was based on TM1. Addi-
tionally, the study assessed how well GOSSYM simulated 
fiber quality for cultivars other than TM1. Since this study 
involved comparisons across 40 different cultivars, an 
extensive experimental study was conducted to system-
atically evaluate cultivar-specific variation in fiber quality, 
followed by the estimation of cultivar-specific parameters 
for all cultivars together. This study helped establish that 
the parameter estimation method, based on the relative 
variation between simulated and observed fiber quality 
values, provided accurate estimates. Since the method 
proved promising, experiments such as those conducted 
in this study are not required if the GOSSYM model is to 
be used for fiber quality estimation of another cultivar that 
is not among the 40 cultivars. Instead, the cultivar-specific 
parameters for a new cultivar can be estimated through 
a straightforward process. The first step is to obtain the 
quality traits corresponding to any environment and 
management conditions for the new cultivar. The next 
step is to run GOSSYM simulations using the same envi-
ronmental and management conditions but applying the 
cultivar-specific parameters corresponding to TM1. This 
can be quickly done by adding the name of the cultivar 
(in this case, TM1) from the cultivar list in the GOSSYM 
model. The simulated quality can then be compared with 
the measured quality of the new cultivar of interest. The 
absolute difference can be used to determine which band 
the cultivar falls in, followed by the determination of the 
cultivar-specific parameters as per the grouping method.

Not all cultivars included in this study are currently 
commercially grown in the USA, and the study is lim-
ited to upland cotton. However, as discussed above, 
cultivar-specific parameters can be developed for 
any cultivar of interest, including Pima cotton culti-
vars. In addition, the fiber quality data used in this 
study were obtained from hand-picked cotton sam-
ples. While hand-picking minimizes fiber damage and 
contamination, the results may still be influenced by 
ginning methods and HVI measurement procedures 
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(Delhom et al. 2020). The accuracy and consistency of 
HVI measurements can vary depending on instrument 
calibration and operational conditions. Therefore, the 
findings of this study may not fully represent fiber qual-
ity outcomes under different harvesting and ginning 
practices. While this study demonstrates the improved 
accuracy of the fiber quality simulation in the GOSSYM 
model with the developed cultivar-specific parameters, 
future studies should include additional validations by 
comparing the fiber quality of the cultivars in varying 
environmental and management conditions to further 
validate the cultivar-specific parameter estimation 
methodology presented in this study.

Conclusions
This study evaluated the capability of the GOSSYM 
model to simulate fiber quality by comparing the model-
simulated and measured fiber quality values for different 
cotton cultivars. Cultivar-specific parameters were esti-
mated to account for the cultivar-related variability in the 
model results. The parameter estimation methodology 
adopted, and the estimated cultivar-specific parameters 
improved the simulation capabilities of the model. The 
proposed methodology can be easily adapted to incor-
porate new cultivars, ensuring the model remains appli-
cable, especially given the frequent development of new 
cultivars each year. Accurately simulating fiber quality is 
highly beneficial for agricultural management, as it helps 
simulate cultivar-environment-management interactions 
and their influence on fiber quality.
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