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Abstract 

Background Cotton is one of the most important commercial crops after food crops, especially in countries 
like India, where it’s grown extensively under rainfed conditions. Because of its usage in multiple industries, such 
as textile, medicine, and automobile industries, it has greater commercial importance. The crop’s performance 
is greatly influenced by prevailing weather dynamics. As climate changes, assessing how weather changes affect crop 
performance is essential. Among various techniques that are available, crop models are the most effective and widely 
used tools for predicting yields.

Results This study compares statistical and machine learning models to assess their ability to predict cotton yield 
across major producing districts of Karnataka, India, utilizing a long-term dataset spanning from 1990 to 2023 
that includes yield and weather factors. The artificial neural networks (ANNs) performed superiorly with acceptable 
yield deviations ranging within ± 10% during both vegetative stage (F1) and mid stage (F2) for cotton. The model 
evaluation metrics such as root mean square error (RMSE), normalized root mean square error (nRMSE), and modelling 
efficiency (EF) were also within the acceptance limits in most districts. Furthermore, the tested ANN model was used 
to assess the importance of the dominant weather factors influencing crop yield in each district. Specifically, the use 
of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-
ture had a major influence on cotton yield in most of the yield predicted districts. These differences highlighted 
the differential interactions of weather factors in each district for cotton yield formation, highlighting individual 
response of each weather factor under different soils and management conditions over the major cotton growing 
districts of Karnataka.

Conclusions Compared with statistical models, machine learning models such as ANNs proved higher efficiency 
in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-
tion at different growth stages. This highlights the best suitability of ANNs for yield forecasting in rainfed conditions 
and for the study on relative impacts of weather factors on yield. Thus, the study aims to provide valuable insights 
to support stakeholders in planning effective crop management strategies and formulating relevant policies.
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Introduction
 Cotton (Gossypium hirsutum L.) is one of the most impor-
tant and widely produced commercial crop in the world 
(Aslam et  al.  2020) and is cultivated mainly in tropical 
regions under rainfed conditions. With respect to acreage, 
India ranks first in the world (13.06 million hectares) and sec-
ond in production, with an annual production of 34.34 mil-
lion bales (170 kg per bale in India). This crop is produced 
as a raw material for the textile industry and has important 
uses in medicine and automobile industries. As cotton is cul-
tivated mainly in rainfed regions, its production dynamics 
rely on the dynamics of weather factors, which prevail dur-
ing the crop growth period. Although the final yield of the 
crop is dependent on the interaction between the genotype 
and environment, the dynamics of weather and resource 
availability (water and nutrients) play a pivotal role in the 
yield potentials. The crop has shown a positive response to 
solar radiation and temperature under optimum availabil-
ity of other resources like soil moisture and nutrients (Mao 
et al. 2019). Biomass formation is also closely related to the 
accumulation of resources such as photosynthetically active 
radiation (PAR), effective temperature accumulation, and soil 
water content (SWC) during the crop growth period (Wu 
et  al.  2022). In addition to the variability in above ground 
microclimate, variations in soil temperature and moisture 
are known to impart root growth, which in turn affects 
above ground biomass formation (Tang et  al.  2010). Many 
studies have been conducted to prove the intimate associa-
tion of weather factors with the metabolism and physiologi-
cal activation of cotton phenology (Wang et al. 2019). There 
is a projection of resource scarcity in the future because of 
changing climate, so improving the utilization of light, tem-
perature and water resources is highly important for sus-
tainable production of cotton (Howden 2008). A key for this 
purpose is to advance the prediction of crop performance 
and estimate the major factors impacting growth and yield 
using theoretical and applied techniques.

Most yield forecasting studies have focused on food 
crops, such as wheat (Kogan et al. 2013), and rice (Wang 
et al.  2010), but there has also been considerable inter-
est in forecasting important fibre crops, such as cotton 
(Baigorria et  al.  2010). As these crops are cultivated 
under natural/rainfed conditions, weather-based crop 
yield forecasting is essential for shaping policies related 
to supply, trade, and production exchange (Dharmaraja 
et  al.  2020). The reliability of such weather-based crop 
yield forecasting depends on the choice of model, its 
input requirements (Hara 2021; Chipanshi 2015), and 
the objective evaluation of model performance. Many 
techniques have been developed to forecast growth and 
to make the best forecast of cotton area, production, 
and yield in different cultivation conditions of India, but 
their suitability depends on the ability of the model to 

describe the observed data. Crop simulation models and 
statistical models are two broad approaches to yield fore-
casting (Bocca et al. 2016). Crop simulation models offer 
detailed insights into crop biology through their reli-
ance on extensive data such as soil, plant, and weather 
data. However, these models often face challenges due to 
limited data availability. In response to these difficulties, 
statistical models based on weather parameters have 
been developed to provide reliable crop acreage estima-
tion and yield predictions (Sharma et al. 2018). Although 
statistical models provide forecasts with reasonable pre-
cision, the calibration and testing of those models using 
historical datasets are crucial. Multiple linear regres-
sions (MLRs) are commonly used statistical crop yield 
prediction models (Rai et  al. 2013; Dhekale et  al.  2014; 
Kumar et  al.  2014). Vashisth et  al. (2018) conducted 
studies on maize at the flowering stage and the grain fill-
ing stage with weather-based statistical model. However, 
there are chances of model over-fitting when the number 
of samples is lesser than the number of predictors and 
the existence of multicollinearity among independent 
factors (Verma et al. 2016). To overcome such discrepan-
cies, feature selection techniques such as stepwise mul-
tiple linear regression (SMLR), least absolute shrinkage 
and selection operator (LASSO), elastic net (ENet) or 
feature extraction such as principal component analysis 
(PCA) statistical techniques are used (Das et al. 2017) in 
forecasting yields in many crops (Paswan et al. 2013; Das 
et al. 2018; Bali et al. 2021), showcasing their enhanced 
effectiveness in yield forecast. Statistical models have the 
potential to expand the scope of advance yield estima-
tion and examine more crop types, particularly for those 
where established process-based models are lacking due 
to a scarcity of crop-specific parameters. Going beyond 
major crops to include more will provide a better picture 
of future global food availability under climate change 
(Hu et al. 2024).

Considering the above background, this study was 
planned based on long term weather and yield datasets 
spanning from 1990 to 2021 with a motive of identifying 
the most suitable forecasting technique for predicting cot-
ton yield in major production districts of Karnataka, India, 
estimating the range of variability in cotton yield as pre-
dicted by different models, the factors that limit the ability 
of a model to predict the yield, options to overcome these 
limitations, etc. The weather-induced production variability 
impacts regional food security, thus it is necessary to study 
the major weather factors behind crop production.

Materials and methods
Study districts
Among the top cotton producing states in India, Karna-
taka stands the fourth, with an area accounting for 7% of 
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the area under cotton in the country and the production 
accounting for 4%, with a productivity of 653  kg·hm–2. 
The top ten districts of Karnataka were selected for the 
study, including Ballari, Belagavi, Chitradurga, Dhar-
wad, Haveri, Kalaburagi, Koppal, Mysuru, Raichur, and 
Vijayapura, which collectively contribute to approxi-
mately 70% of the state’s cotton area and production. The 
rainfall and rainy days of ten districts are presented in 
Supplementary Table 1. In 2021, Kalaburagi emerged as a 
significant contributor to cotton cultivation, leading to an 
area of 67 065  hm2, producing 205 930 bales and achiev-
ing a higher productivity of 522 kg·hm–2. Raichur, with an 
extensive cultivation area of 169 518  hm2, also played a 
substantial role, producing 427 785 bales of cotton at a 
productivity of 429 kg·hm–2 (Table 1). In 2023, a notable 
change in the cotton area was observed across these dis-
tricts. Raichur contributed the most to the cotton cultiva-
tion area (179 701  hm-2), followed by Kalaburagi. These 
districts were the focus of the study for forecasting cot-
ton yield using different models, considering their signifi-
cant contribution to the state’s cotton production.

The cotton yield distribution across ten districts from 
1990 to 2021 is shown in Fig. 1, highlighting notable vari-
ations in yield patterns. Raichur has the highest variabil-
ity whereas Mysuru, Dharwad, Chitradurga, and Belagavi 
display moderate variability in yield. Koppal exhibits 
relatively low variability in yield, suggesting a more sta-
ble and consistent yield pattern. The median of yield is 
positioned towards the upper end of the range, indicating 
a tendency for higher yields. In Kalaburagi, the median 
leans towards the upper end, signifying wide variability 
in yield indicating a mix of higher yields but with notable 
variability. Vijayapura showes a wide interquartile range, 
indicating significant variability in yield. The median 
yield is toward the lower end, suggesting that the major-
ity of yields are below the median.

Datasets sources
Long term (from 1990 to 2021) dataset on planted area, 
production, and productivity of cotton during kharif 
(crop sown during south-west monsoon season grown 
under rainfed conditions) season in major growing dis-
tricts of Karnataka was sourced from the Directorate 
of Economics and Statistics, Government of Karnataka 
(https:// des. karna taka. gov. in). The datasets were checked 
for the presence of outliers, i.e., extremes, and were 
detrended based on their regression with time fac-
tor. After each step of detrending, the significance was 
checked and if there was no significant yield change 
with time, again the same process was continued until 
there was an observed significant change in yield with 
time. A dataset pertaining to daily weather parameters, 
i.e., maximum and minimum temperature, morning and 
evening relative humidity, and rainfall, pertaining to the 
study years, was sourced from the India Meteorologi-
cal Department (https:// mausam. imd. gov. in) using the 
inverse distance weightage method.

Calculation of weather indices
To formulate a composite model that considers the indi-
vidual and interactive impacts of weather variables, a set of 
independent factors such as weather variables and weather 
indices were calculated. These factors can be classified into 
two categories: unweighted and weighted weather vari-
ables. Unweighted weather variables representing direct 
observation and weighted weather variables were calcu-
lated to account for the interactive impact of weather fac-
tors on crop performance. To account for yield variability 
due to both sole and interactive effects of weather fac-
tors forecasting models that depend on both unweighted/
individual and unweighted/interactive weather factors 
are often employed for predicting yields in crops like rice, 
wheat, sugarcane and potato (Manideep  2022; Mehta 

Table 1 The planted area, production, and productivity of cotton in top ten districts of Karnataka

District 2021 2023

Planted area /(hm2) Production/bales Yield / (kg·hm–2) Planted area /(hm2)

Ballari 32 812 98 823 512 26 926

Belagavi 22 435 54 768 415 16 918

Chitradurga 108 22 23 363 367 8 715

Dharwad 53 479 101 609 323 30 573

Haveri 25 572 60 771 404 19 298

Kalaburagi 67 065 205 930 522 104 525

Koppal 13 081 28 778 374 15 870

Mysuru 25 570 33 993 226 36 312

Raichur 169 518 427 785 429 179 701

Vijayapura 35 046 99 159 481 53 676

https://des.karnataka.gov.in
https://mausam.imd.gov.in
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et al. 2010). To generate these weather indices, two distinct 
methodologies were used. The unweighted weather indices 
were computed by aggregating weekly weather variables 
encountered throughout the crop period. On the other 
hand, the weighted indices were established by summing 
the product of the correlation coefficient and the value of 
the corresponding weekly weather variable. The formulas 
for computing unweighted and weighted weather indices 
are summarized below. By doing this, a time series data-
set comprising 32 (from 1990 to 2021) weather variables 
(Table 2) and yield was generated.

Unweighted weather indices:

Weighted weather indices:

Zij =

m∑

w = 1

xiw

Zii′j =

m∑

w = 1

xiwxi′w

Zij =

m

w = 1

r
j
iwxiw

Fig. 1 Box plot representing district wise cotton yield distribution during 1990–2021. The central box in each plot represents the interquartile 
range, with the median line inside the box. The whiskers extend to the minimum and maximum values

Table 2 Derived unweighted and weighted indices of 
composite weather parameters for model analysis

Note: Tmax represents maximum temperature, Tmin represents minimum 
temperature, Rf represents rainfall, Rh I represent relative humidity in the 
morning, Rh II represents relative humidity in the evening, * represents 
multiplicative interaction between the two variables, Zik represents weather 
index generated by one weather variables or combination of two weather 
variables

Parameter Unweighted weather 
indices

Weighted 
weather 
indices

Tmax Z10 Z11

Tmin Z20 Z21

Rf Z30 Z31

Rh I Z40 Z41

Rh II Z50 Z51

Tmax*Tmin Z120 Z121

Tmax*Rf Z130 Z131

Tmax*Rh I Z140 Z141

Tmax*Rh II Z150 Z151

Tmin*Rf Z230 Z231

Tmin*Rh I Z240 Z241

Tmin*Rh II Z250 Z251

Rf*Rh I Z340 Z341

Rf*Rh II Z350 Z351

Rh I*Rh II Z450 Z451
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Where, xiw and X i′ w are values of two distinct 
weather variables (ith/i′th) for the same time period 
(the  wth week), rj

iw represents the correlation coeffi-
cient between the de-trended yield and the ith weather 
variable during the wth week of the jth time period, and 
rj

ii′w represents the correlation coefficient related to 
the interaction between ith and i′th weather variables, 
and the detrended yield during the wth week in the jth 
time period.

Brief background of multivariate models used in the study
The details of multivariate models used in this study to 
develop kharif cotton yield prediction are described 
below and the structured framework for yield forecasting 
models is illustrated in Fig. 2.

Zii′j =

m∑

w = 1

r
j
ii′wxiwxi′w

Stepwise multiple linear regression
MLR is the standard and simplest approach for devel-
oping calibration models. However, its application to 
datasets with more independent variables and a greater 
sample size is not always successful (Balabin 2011). Fea-
ture selection in the form of SMLR gives good results 
on large datasets. A stepwise regression procedure was 
adopted for the selection of the best regression variable 
among many independent variables (Singh 2014). ICAR 
- Indian Agricultural Statistical Research Institute 
developed models to express the effect of weather vari-
ables on crop yield. Yield is considered the dependent 
variable and weekly weather variables are considered 
the independent variables. Weekly weather variables 
are generated from daily data by averaging daily maxi-
mum temperature, minimum temperature, morning 
relative humidity, evening relative humidity, and rain-
fall summing up. Two weather indices (unweighted and 
weighted) are developed for each weather variable, and 

Fig. 2 Framework representing different stages in model for yield forecasting of cotton
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indices are also generated for the interaction of weather 
variables. A combination of weather indices generated 
from weather variables (Table 2). Regression analysis is 
used to fit equations; weighting coefficients in the equa-
tions are obtained empirically using standard statistical 
procedures such as multivariable regression analysis 
using SPSS software. It appears that the study focuses 
on understanding the relationship between weather 
variables and crop yield and the use of regression mod-
els, including SMLR, to analyze and predict these rela-
tionships. The weighting coefficients are determined 
through empirical methods to enhance the accuracy of 
the model.

Artificial neural networks
These artificial intelligence (AI) methodologies provide 
a more effective means of tackling complexities within 
natural systems characterized by a multitude of inputs. 
ANNs are nonlinear and non-statistical models that 
mimic the learning process of the human brain (Starks 
2019; Lawrence  1994) and no assumption of normality 
of the data is implied. Achieving optimal crop yield at 
minimal cost is a primary objective in agricultural pro-
duction. The timely identification and management of 
issues associated with crop yield indicators play a piv-
otal role in amplifying overall productivity. The recent 
application of AI, encompassing technologies like ANNs, 
fuzzy systems, and genetic algorithms, has showcased 
enhanced efficiency in addressing challenges linked to 
agricultural yield. In the current study, a three-layered 
feed-forward artificial neural network comprising input, 
hidden, and output layers was proposed. The neurons or 
nodes in each layer are interconnected, with the number 
of nodes in the input and output layers predetermined by 
the dataset. The number of nodes in the input and out-
put layers is fixed by the dataset used. There is a need to 
take care to choose the optimum number of hidden lay-
ers while implementing the ANN for yield forecasting, 
by using the ‘train’ function of the ‘caret’ package, using 
the method ‘nnet’ with 10-fold cross-validation in R soft-
ware (Kuhn 2008). The ANN model is iteratively trained 
and evaluated until its predictive accuracy is maximized 
(Yang 2017). The analysis involved allocating 80% of 
the dataset for calibration (training) purposes and, the 
remaining 20% for validation (testing). A comprehensive 
set of 32 weather indices was utilized as inputs with yield 
serving as the dependent variable, and other factors act-
ing as independent variables (Fig. 3).

Least absolute shrinkage and selection operator
LASSO and ENet methods are two shrinkage regres-
sion methods used for handling multicollinearity by 

penalizing the magnitude of regression coefficients 
(Piaskowski et  al.  2016). LASSO reduces the number of 
predictors in a regression model and identifies important 
predictors. By shrinking the coefficients of less useful 
predictors to zero, LASSO can automatically choose an 
important variable and reject the rest from the model. By 
adopting a regularization technique, the variance of the 
estimated regression coefficients is minimized, and thus, 
the estimators are more stable.

Random forest (RF)
The RF model is a supervised technique for both clas-
sification regression and non-linear problems. This 
method uses the ensemble learning method for regres-
sion and is a bagging technique because it combines 
individual decision trees to yield better results. The 
advantage of the RF model is that it handles the miss-
ing values and maintains accuracy (Fang et  al. 2021). 
A RF is an ensemble machine learning technique that 
constructs multiple trees while training data and gives 
class labels for classification problems or mean/average 
prediction for regression. It can also be used in both 
univariate and multivariate time series forecasts by 
manually creating lag and seasonal component varia-
bles. According to the nature of the data, different algo-
rithms react differently.

Autoregressive integrated moving average (ARIMAX)
The ARIMAX model is an extended version of the 
ARIMA model. The ARIMAX model is linear in nature 
and hence does not explain the nonlinearity compo-
nents. Here, we have tried to improve the performance 
of the ARIMAX model by explaining residuals through 
machine learning approaches such as ANN and support 
vector machines (Zhang 2003).

Model performance evaluation
Model performance was tested using different statis-
tical model performance evaluation measures. The 
use of more than one measures helps us to evaluate 
a single model’s performance and compare multiple 
models. In this study, the coefficient of determination 
(R2), root mean square error (RMSE), normalized root 
mean square error (nRMSE), modelling efficiency (EF), 
and mean absolute percentage error (MAPE) were 
calculated.

The R2 is important for measuring the effectiveness 
of the models (Shaikh et al. 2021; Ağbulut et al. 2020), 
ranging from 0 to 1. This approach provides insight 
into how well the trend of the model result is able to 
track the trends of observed data (Ağbulut et al. 2021). 
A value closer to 1 indicates that the model is more 
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accurate. RMSE measures the average magnitude of 
the error and is related to the deviation from the actual 
value. An RMSE value of 0 indicates that the model 
has a perfect fit. The lower the RMSE is, the better the 
model and its predictions. The nRMSE expresses the 
spread around the measurements used for the clas-
sification of model performance into distinct groups 
(excellent, good, fair, or poor when the values are in 
the range of < 10%, 10–20%, 20–30%, or > 30%, respec-
tively). The modelling efficiency indicates whether the 
model describes the data better than simply the aver-
age of the predictions. The optimal values are those 
that are near 1 (Thimmegowda et al. 2023). The MAPE 
was defined as the sum of the percentage to mean 
absolute error (MAE) (Kumar et al. 2020). For a good 
model, a smaller MAPE value is desirable. The MAPE 
less than 5% is considered as an indication that the 
forecast is acceptably accurate. MAPE greater than 
10% but less than 25% indicates low accuracy, but a 
MAPE greater than 25% indicates very low accuracy. 
The model with a lower MAPE is preferred for fore-
casting purposes.

Stage specific evaluation of cotton yield prediction models 
using weather data
The quantification of weather impacts on crop growth 
is a cumbersome task, as weather factors impart yield 
through their direct and interactive effects. In our study, 
kharif cotton yield was forecasted at the vegetative stage 
(leaf development, stem growth, and root expansion, i.e., 
40 to 60 days after sowing) and mid stage (flowering and 
fruit development, i.e. 80 to 100 days after sowing) using 
five different models (SMLR, LASSO, ANN, RF, and ARI-
MAX). The crop duration in cotton is around 160–190 
days, depending on the variety and growing conditions. 
Here the models were calibrated (1990–2018) and vali-
dated (2019–2021) using the historical dataset of weather 
variables and crop yield datasets, and the  yield in 2023 
was forecasted. Previous studies have reported that data 
from a couple of months prior to harvest can be used for 
short range crop predictions using statistical regression 
models (Chipanshi 2015; Mkhabela 2011; Seiler 2000). 
A similar methodology was used to analyse yield pre-
diction with 16 standard meteorological weeks (SMWs) 
corresponding to the vegetative stage, and 20 SMWs 
corresponding to the mid-stage of crop growth. This 

Fig. 3 Graphical image of the established artificial neural network for cotton yield forecasting (I1, I2, I3………. I31 represent the input layer 
consisting of independent weather indices, B1 represents the hidden layer accounting for the intermediate effect of the combination of weather 
indices as eight neurons viz., H1, H2…H8, B2 indicates the second hidden layer addressing the impact of the first hidden layer and at the end, O1 
indicates the output i.e. yield.)
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approach ensured the stage-specific weather influences 
were accurately captured and integrated into the predic-
tion model.

Results
Cotton yield prediction using SMLR model
The Kharif cotton yield was validated in 2020 and 2021 
at the F1 and F2 stages using SMLR across ten districts 
(Table  3). The model’s prediction accuracy by display-
ing the actual yield, predicted yield, and percent devia-
tion among them. The results showed that prediction 
accuracy was good with low deviations in few districts, 
while in other districts it showed large deviation in other 
districts, indicating varying performance of the SMLR 
model across different districts and stages among the 

districts. The negative deviation indicated that the model 
has overestimated the yield, and positive deviations indi-
cated under-estimations. The yield forecasted in Dhar-
wad district at both stages in 2020 and 2021 exhibited 
better results in comparison with other districts, while 
the forecast results for Kalaburagi were worse with over-
estimation reaching − 77% at the F1 stage and − 30% at 
the F2 stage followed by Raichur district with the same 
trend.

Cotton yield prediction using ARIMAX model
The predicted cotton production for ten districts devi-
ated from the actual cotton production using the ARI-
MAX model (Table  4). The RMSE ranged between 87 
(Koppal) and 41 (Chitradurga and Vijayapura) at the F1 

Table 3 District-wise deviation percent of kharif cotton yield at F1 and F2 stages validated in 2020 and 2021 using SMRL model

A actual yield (kg·hm–2), P predicted yield (kg·hm–2), D deviation

District F1 stage F2 stage

2020 2021 2020 2021

A P D/% A P D/% A P D/% A P D/%

Ballari 579 357 38 512 357 30 579 443 24 512 452 12

Belaagavi 414 298 28 415 301 27 414 259 37 415 302 27

Chitradurga 406 276 32 367 300 18 406 337 17 367 322 12

Dharwad 315 322 –2 323 325 0 315 316 0 323 318 2

Haveri 341 444 –30 404 420 –4 341 408 –20 404 402 0

Kalaburagi 405 717 –77 522 743 –42 405 669 –65 522 677 –30

Koppal 382 434 –14 374 254 32 382 362 5 374 200 47

Mysuru 286 202 29 226 132 41 286 143 50 226 297 –31

Raichur 530 548 –3 429 558 –30 530 545 –3 429 556 –29

Vijayapura 360 511 –42 481 433 10 360 509 –4 481 520 –8

Table 4 District-wise deviation percent of kharif cotton yield at F1 and F2 stages validated in 2020 and 2021 using ARIMAX model

A actual yield (kg·hm–2), P predicted yield (kg·hm–2), D deviation

District RMSE MAPE F1 stage RMSE MAPE F2 stage

2020 2021 2020 2021

A P D/% A P D/% A P D/% A P D/%

Ballari 48 17 579 525 9 512 582 –14 55 19 579 316 45 512 305 40

Belagavi 52 16 414 479 –16 415 586 –41 79 33 414 312 25 415 356 14

Chitradurga 41 15 406 272 33 367 296 19 47 17 406 316 22 367 336 9

Dharwad 32 11 315 347 –10 323 316 2 34 15 315 306 3 323 350 –8

Haveri 52 16 341 478 –40 404 562 –39 32 9 341 267 22 404 300 26

Kalaburagi 81 23 405 756 –87 522 776 –49 77 22 405 765 –89 522 848 –62

Koppal 87 28 382 271 29 374 418 –12 81 23 382 356 7 374 248 34

Mysuru 51 16 286 276 3 226 235 –4 43 15 286 179 38 226 322 –43

Raichur 43 21 530 505 5 429 509 –19 41 22 530 544 –3 429 547 –28

Vijayapura 41 16 360 511 –42 481 212 56 39 16 360 509 –42 481 515 –7
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stage and between 81 (Koppal) and 32 (Haveri) at the F2 
stage. Except for the Koppal at the F1 stage and Belagavi 
district at the F2 stage, all districts had a MAPE value 
of less than 25% at both the F1 and F2 stages, indicat-
ing lower but acceptable accuracy. The yield was over-
stimated and ranged from − 16% to − 87% in 2020 and 
− 49% to − 4% in 2021 at the F1 stage. Furthermore, 
cotton production was underestimated in the remain-
ing districts (for example, Ballari, Chitradurga, Koppal, 
Mysuru, and Raichur in 2020 and Chitradurga, Dharwad, 
Vijayapura in 2021). Similar results were also observed at 
the F2 stage. The model consistently performed better in 
districts like Dharwad and Chitradurga with lesser devia-
tion and lower RMSE. On the other hand, Kalaburagi 
and Koppal districts showed large deviations with higher 
RMSE suggesting the model need improvement or exter-
nal factors are influencing cotton yield in these areas.

Cotton yield prediction using LASSO model
The yields forecasted in 2020 and 2021 for cotton at the 
F1 and F2 stages using LASSO model were calibrated and 
validated against the actual yields (Table  5). The RMSE 
ranged from 33 (Dharwad) to 91 (Koppal) at the F1 stage 
and from 31 (Haveri) to 85 (Koppal) at the F2 stage. At 
the F1 stage, except for the Koppal district, all other dis-
tricts had MAPE values less than 25%, indicating lower 
but acceptable accuracy, and at the F2 stage, the MAPE 
values for most districts were less than 25%, except for 
Belagavi and Koppal district. The LASSO model dem-
onstrated variable performances across districts and 
years. Cotton production is overstimated across the dis-
tricts, yield deviating as − 18% (Belagavi), − 4% (Dhar-
wad), − 19% (Haveri), − 79% (Kalaburagi), and − 35% 
(Vijayapura) in 2020 at the F1 stage. At the F2 stage of 

2021, the percent deviation of − 33% in Belagavi, − 13% in 
Haveri, − 41% in Kalaburagi, − 79% in Kalaburagi, − 17% 
in Raichur district and other districts showed understi-
mates. Underestimates and overestimates were observed 
in different districts and different years, suggesting the 
need for refinement. Further analysis and refinement of 
the LASSO model may be necessary to improve accuracy, 
especially in districts where significant deviations were 
observed.

Cotton yield prediction using RF model
The cotton yield prediction was validated in 2020 
and 2021 at the F1 and F2 stages using random forest 
(Table 6). The model calibrated and tested for RMSE and 
MAPE ranged from 29 (Raichur) to 105 (Koppal) and 
from 13 (Raichur) to 39 (Koppal) at the F1 stage, respec-
tively. Similarly, at the F2 stage, the calibrated yields 
for the RMSE and MAPE ranged from 28 (Mysuru) to 
89 (Kalaburagi) and from 10 (Mysuru) to 30 (Belagavi), 
respectively. Dharwad and Vijayapura districts showed 
smaller deviations, indicating more accurate predictions 
among the other districts. Whereas, districts like Haveri, 
Kalaburagi, and Koppal showed higher deviations, par-
ticularly at the F1 stage. However, the validated results 
at the F1 and F2 stages in 2020 and 2021 showed mixed 
results of underestimation and overestimation by the 
model; in a few districts, the deviation percentage was 
within the acceptable limit, and in other districts, the 
predicted yield tended to vary.

Cotton yield prediction using ANN model
The percentage difference between the forecast and 
actual yield was validated for the period 2020 and 2021 
to determine the accuracy of the ANN model (Table 7). 

Table 5 District-wise deviation percent of kharif cotton yield at F1 and F2 stages validated 2020 and 2021 using LASSO model

A actual yield (kg·hm–2), P predicted yield (kg·hm–2), D deviation

District RMSE MAPE F1 stage RMSE MAPE F2 stage

2020 2021 2020 2021

A P D/% A P D/% A P D/% A P D/%

Ballari 62 18 579 451 22 512 457 11 58 18 579 334 42 512 322 37

Belagavi 48 16 414 487 –18 415 552 –33 82 32 414 290 30 415 313 25

Chitradurga 38 13 406 241 41 367 245 33 40 14 406 263 35 367 270 26

Dharwad 33 14 315 328 –4 323 301 7 35 16 315 287 9 323 325 –1

Haveri 48 16 341 405 –19 404 456 –13 31 10 341 295 14 404 333 18

Kalaburagi 83 22 405 725 –79 522 736 –41 79 20 405 740 –83 522 808 –55

Koppal 91 33 382 302 21 374 425 –14 85 30 382 366 4 374 285 24

Mysuru 49 16 286 278 3 226 224 1 44 14 286 174 39 226 249 –10

Raichur 41 20 530 489 8 429 501 –17 40 19 530 516 3 429 540 –26

Vijayapura 40 14 360 486 –35 481 440 9 38 14 360 494 –37 481 697 –45
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In 2020, at the F1 stage, Koppal (–5.2%), Kalabur-
agi (–13.6%), Mysuru (–0.6%), Raichur (–2.1%), and 
Vijayapura (–0.4%) exhibited overestimation, and other 
districts exhibited underestimation, ranging from 0.6 
to 3.5%. At the F2 stage, Ballari and Vijayapura yield 
validated were overestimation with − 0.4% and − 9.3%, 
respectively.

Similarly, in the 2021 F1 stage, two (Mysuru and 
Vijayapura) districts overstimated the cotton yield, with 
a − 1% deviation each; however, for other eight districts, 
the forecasted yields were underestimated; at the F2 
stage, the yield was understimated for six districts out of 
ten districts, with a deviation percent ranging from 0.3% 
to 9.1% and rest of the districts overstimated the yield. 

The results revealed an excellent agreement between the 
actual and forecasted yields. The errors calculated by 
this model were within the acceptable limits i.e., ± 10%, 
for most of the districts except for Kalaburagi at the F1 
stages in both 2020 and 2021; hence, this can be best 
used for yield predicting.

The performance of the calibrated kharif cotton yield 
prediction model using ANN was evaluated across vari-
ous districts (Table  8). A model with smaller RMSE, 
nRMSE, and higher EF values is considered to be better. 
The ANN models were used to used to evaluate for the 
F1 and F2 stages, with RMSE values ranging from 1.30 
to 49.0 for the F1 stage and 1.8 to 60.1 for the F2 stage. 
The nRMSE values ranged from 0.4 to 16.9 for the F1 

Table 6 District-wise deviation percent of kharif cotton at F1 and F2 stages validated in 2020 and 2021 using random forest model

A actual yield (kg·hm–2), P predicted yield (kg·hm–2), D deviation

District RMSE MAPE F1 stage RMSE MAPE F2 stage

2020 2021 2020 2021

A P D/% A P D/% A P D/% A P D/%

Ballari 69 25 579 475 18 512 482 6 62 23 579 418 28 512 412 20

Belagavi 57 18 414 479 –16 415 571 –38 73 30 414 406 2 415 369 11

Chitradurga 39 13 406 201 51 367 223 39 53 19 406 273 33 367 330 10

Dharwad 40 19 315 330 –5 323 286 12 38 17 315 281 11 323 326 –1

Haveri 57 18 341 506 –48 404 515 –28 46 15 341 455 –34 404 436 –8

Kalaburagi 85 23 405 680 –68 522 664 –27 89 22 405 662 –64 522 756 −45

Koppal 105 39 382 305 20 374 374 0 76 24 382 541 –42 374 439 –17

Mysuru 53 18 286 245 14 226 234 –4 28 10 286 92 68 226 359 –59

Raichur 29 13 530 514 3 429 468 –9 37 16 530 439 17 429 491 –15

Vijayapura 60 22 360 371 –3 481 398 17 63 21 360 393 –9 481 410 15

Table 7 District-wise deviation percent of kharif cotton yield at F1 and F2 stages validated in 2020 and 2021 using ANN model

District 2020 2021

Actual yield/
(kg·hm-2)

F1 F2 Actual yield/
(kg·hm-2)

F1 F2

Forecast
yield/
(kg·hm-2)

Devia
tion/%

Forecast
yield/
(kg·hm-2)

Devia
tion/%

Forecast yield/
(kg·hm-2)

Devia
tion/%

Forecast yield/
(kg·hm-2)

Devia
tion/%

Ballari 579 579 0.0 581 –0.4 512 503 2.0 526 –2.8

Belagavi 414 400 3.5 377 8.9 415 400 4.0 377 9.1

Chitradurga 406 397 2.2 374 7.8 367 344 6.0 374 –2.0

Dharwad 315 313 0.6 309 1.9 323 309 4.0 322 0.3

Haveri 341 339 0.7 339 0.7 404 404 0.0 402 0.5

Kalaburagi 405 460 –13.6 399 1.4 522 460 12.0 525 –0.6

Koppal 382 402 –5.2 352 7.9 374 372 1.0 349 6.6

Mysuru 286 288 –0.6 286 0.0 226 227 –1.0 233 –3.1

Raichur 530 541 –2.1 524 1.2 429 429 0.0 426 0.8

Vijayapura 360 362 –0.4 394 –9.3 481 486 –1.0 480 0.3
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stage and 0.6 to 16.9 for the F2 stage, while the EF val-
ues ranged from 0.9 to 1.0 for both stages. Among the 
districts yield predicted, at the F1 stage, lower values of 
RMSE (1.30), nRMSE (0.4) and the highest EF (1.00) was 
found in Haveri district and higher value was observed 
in Belagavi district, with 49.0, 16.9, and 0.80 of RMSE, 
nRMSE, and EF, respectively. Similarly, at the F2 stage, 
lower value of RMSE (1.8), nRMSE (0.6) and EF (1.00) 
was found in Haveri district and higher RMSE was 
observed in Kalaburagi and Belagavi districts, with the 
highest nRMSE of 19.7. Overall, the model performed 
excellently, with an nRMSE value less than 10% catego-
rized as excellent for eight out of ten districts in the F1 
stage and for seven districts as excellent in the F2 stage. 
Moreover, the nRMSE value was categorized as good in 
two districts in the F1 stage and in three districts during 
the F2 stage.

Inter comparison of models for their yield predictability
The kharif cotton yield was forecasted in 2023 at the 
F1 stage using SMLR for ten districts. The model per-
formance was evaluated using R2, F value, and stand-
ard error (SE) of the estimates resulted from different 
weather variables (Table  9). The R2 value in the model 
ranges from 0.52 to 0.87. The model generally performs 
well across the districts, with R2 values above 0.7 for nine 
districts. Dharwad district had a lower SE (44.16), indi-
cating relatively accurate predictions, and a higher R2 
(0.78). The Kalaburagi district has a higher SE (112.16), 
suggesting less accurate predictions, but still with a mod-
erate R2 (0.76). The R2 value of the Belagavi district is less 
than 0.6, indicating a moderate fit and suggesting that the 
model may not fit the data in that region. While R2 pro-
vides an overall measure of goodness-of-fit, it is essential 

to consider the specific context of each district and the 
agricultural factors that might influence the predictions.

Similarly, the yield was also forecasted in 2023 at the 
F2 stage using SMLR for ten districts, and the regression 
equations and weather variables influencing the equation 
and the model performance were evaluated (Table  10). 
The model generally performs well across all districts, 
with consistently higher R2 values. A lower SE value sug-
gests that the model provides accurate estimates for most 
districts. Dharwad district had a lower SE (41.91), indi-
cating relatively accurate predictions, and the highest R2 
(0.89). The Kalaburagi district has a higher SE (95.26), 
suggesting less accurate prediction, but still with a good 
R2 of 0.84. All districts have an R2 value above 0.7, indi-
cating a stronger fit for predicting cotton yield at the F2 
stage compared with the F1 stage.

The kharif cotton yield forecasted in 2023 at the F1 and 
F2 stages for the ten districts using ARIMAX, LASSO, 
RF, and ANN (Tables  11  and 12). The estimated yield 
at F1 stage ranged from 206  kg·hm–2 (Vijayapura) to 
916 kg·hm–2 (Kalaburagi), 196 kg·hm–2 (Chitradurga) to 
860 kg·hm–2 (Kalaburagi), 170 kg·hm–2 (Chitradurga) to 
792 kg·hm–2 (Kalaburagi), and 145 kg·hm–2 (Chitradurga) 
to 486 kg·hm–2 (Vijayapura) using ARIMAX, LASSO, RF, 
and ANN, respectively.

Similarly, at the F2 stage, the estimated yields ranged 
from 201  kg·hm–2 (Mysuru) to 883  kg·hm–2 (Kalabur-
agi), 144 kg·hm–2 (Mysuru) to 839 kg·hm–2 (Kalaburagi), 
144  kg·hm–2 (Koppal) to 797  kg·hm–2 (Kalaburagi), and 
193  kg·hm–2 (Mysuru) to 819  kg·hm–2 (Ballari) using 
ARIMAX, LASSO, RF, and ANN, respectively.

The district average yields forecasted at the F1 stage 
in 2023 were found to be 401, 414, 408, and 380 kg·hm–2 
using ARIMAX, LASSO, RF, and ANN, respectively. 
Similarly, the average yield predicted at the F2 stage in 

Table 9 Kharif cotton yield forecast in 2023 at the F1 stage using SMLR

The weather parameters in the formula are shown in Table 2

SE standard error

District Equation R2 F-value SE Forecast
yield (kg·hm–2)

Ballari Y=–48.35 + 6.764*Time + 0.317*Z51 + 0.013*Z351 0.79 33.31 71.44 316

Belagavi Y=–2.66 + 0.05* Z131 + 0.08*Z151 0.52 15.53 83.61 329

Chitradurga Y = 239.17–40.53*Z21–0.66*Z50 + 0.39*Z141 + 0.07*Z451 0.74 17.81 52.13 181

Dharwad Y = 35.24 + 3.18*Time + 0.04*Z131 0.78 50.01 44.16 262

Haveri Y=–4.91 + 0.05*Z131 + 0.007*Z150 0.75 30.57 66.62 446

Kalaburagi Y = 18.39 + 15.22*Time–1.64*Z41 + 0.04*Z451 0.76 27.87 112.16 734

Koppal Y = + 3.94*Z20 + 101.24*Z21 + 0.02*Z341 + 0.05*Z451 0.77 15.14 88.56 682

Mysuru Y = 16.23–2.69*Time + 0.02*Z151–0.01*Z230 + 0.02*Z341 0.84 27.98 44.51 166

Raichur Y=–15.44 + 10.31*Time–0.07*Z131 + 0.04*Z341 0.87 59.88 58.18 423

Vijayapura Y=–9.26 + 11.02*Time–0.24*Z131 + 0.09*Z351 0.76 28.90 62.14 404
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2023 was 424, 408, 383, and 395 kg·hm–2 using respective 
models. The predicted mean yield in 2023 using differ-
ent models was found to be higher than the average yield 
(1990–2021) of 289 kg·hm–2 (Fig. 4).

Assessment of major weather factors imparting cotton 
yield
As the performance of the ANN in comparison to other 
models was statistically good, the tested model was fur-
ther used to assess variables of importance. Assessment 
of variable importance is a statistical methodology com-
monly used for identifying top variables having greater 
contribution over the dependent parameter and is 
dependent on the ‘weights’ assigned by the ANN dur-
ing the formulation of the model. Significant weather 
variables that strongly influenced cotton production in all 
districts in the present study were identified (Figs. 5 and 
6). Firstly, ANN and SMLR differed with respect to the 
identification of important variables, as there was a defi-
ciency of SMLR to consider a large number of variables 
except input variables. In the case of ANN, it consid-
ers the interaction between two variables as a new vari-
able and assigns ‘weights’ to the particular variable after 
iterating with all other variable combinations. Secondly, 
there was a district wise difference in the type of impor-
tant variable identified by ANN because of relative vari-
ability of interaction of weather factors in each district 
(Das 2018). The districts differed with respect to variable 
importance for cotton yield formation during the vegeta-
tive stage (F1), however, similarities in the most influenc-
ing factor for cotton yield i.e. interaction between Tmax 
and Rh II (Z151) were identified in districts like Dharwad 
and Vijayapura districts. In districts like Kalaburagi, Bel-
agavi, and Mysuru, the interaction between Tmin  and Rf 
(Z230) was found highly influential on yield. In remaining 

districts, there was a mixed occurrence of highly influ-
ential variables of importance, signifying a differential 
role of weather variables in different districts on yield 
formation.

During mid-stage (F2) there was differential influence 
of weather factors identified, in Mysuru and Raichur dis-
tricts the unweighted interaction of Tmax and Rf (Z130) 
was responsible for yield formation, whereas, in Dhar-
wad and Ballari, the weighted interaction of Tmin and Rf 
(Z231) were responsible. Except these, in the remaining 
six districts a mixed influence of weather factors was 
observed. The influence of critical weather variables 
varied notably among districts and among the growth 
stages. The variability is largely due to the crop’s specific 
weather requirements for optimal growth and yield. For 
example, in dry farming districts like Kalaburagi, Ballari, 
there is a limited availability of soil moisture (rainfall) 
and a high scope for evapotranspiration hence the yield is 
most likely to be imparted through these. These variables 
not only impact crop yield but also influence pest and 
disease epidemiology, which in turn impacts cotton yield 
(Madasamy et  al. 2020). Previously, correlation stud-
ies have revealed a positive correlation between morn-
ing and evening relative humidity on the population of 
sucking insect pests and a negative correlation between 
maximum and minimum temperature on the population 
of sucking insect pests (Shivaray Navi et al. 2021; Krishna 
et al. 2020).

Discussion
Crop yield, being a complex function of different factors 
like edaphic/soil, climate, and management, relied on the 
variabilities brought in among them. The edaphic factors 
are relatively stable, and the management is constant, the 

Table 10 Kharif cotton yield forecast in 2023 at the F2 stage using SMLR

The weather parameters in the formula are shown in Table 2

SE standard error

District Equation R2 F-value SE Forecast
yield (kg·hm–2)

Ballari Y=–28.86 + 8.90*Time + 0.30*Z51 + 0.10*Z241 0.80 36.12 69.17 404

Belagavi Y=–7.75 + 0.41*Z10 + 0.05*Z131 0.71 14.90 84.51 334

Chitradurga Y=–1.10–0.02*Z150 + 0.06*Z451 0.80 24.48 58.69 208

Dharwad Y = 31.94 + 3.36*Time + 0.04*Z131 0.89 57.08 41.91 267

Haveri Y=–10.09 + 0.02*Z351 + 0.12*Z151 0.78 35.57 62.86 420

Kalaburagi Y = 2.37 + 7.48*Time–0.82*Z40 + 0.91*Z121 + 0.05* Z131 + 0.04*Z451 0.84 25.58 95.26 897

Koppal Y=–216.47 + 2.45*Z20 + 33.39*Z21 + 0.02*Z341 + 0.03*Z451 0.78 16.85 84.93 478

Mysuru Y=–59.17 + 4.88*Z21 + 2.78*Z41–0.10*Z140 + 0.34* Z141 + 0.04*Z341–0.04*Z351 0.91 32.83 34.96 200

Raichur Y=–21.01 + 10.42*Time–2.92*Z31 + 0.04*Z341 0.93 60.21 58.05 424

Vijayapura Y = 2.52 + 10.65*Time–0.22*Z131 + 0.09*Z351 0.87 29.29 61.81 406
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Fig. 4 Inter comparison of different multivariate models for their kharif cotton yield predictability during vegetative (F1) and mid (F2) stages 
in major cotton growing districts of Karnataka
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Fig. 5 Importance of top 10 weather indices in predicting cotton yield using the ANN model at the F1 stage. The y-axis indicates the weather 
indices, and x-axis indicates the importance of the particular feature in predicting the yield
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Fig. 6 Importance of top 10 weather indices in predicting cotton yield using the ANN model at the F2 stage. The y-axis indicates the weather 
indices, and x-axis indicates the importance of the particular feature in predicting the yield
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yield is defined majorly by climatic factors. These being 
dynamic with time and space, impart a variable impact 
on the crop. Though efforts have been made to have an 
estimate of crop yield due to climate variability, the tra-
ditional techniques such as SMLR fail to capture complex 
interactive effects of climatic parameters thus necessitat-
ing the application of machine learning models. These 
models also differ in their ability to capture the influence 
of weather factors, models like ANNs are successful to 
a maximum extent in predicting the yield (Khaki 2021; 
Alvarez 2009; Li et al. 2007).

For evaluating the effectiveness of ANN in cotton yield 
prediction, a comparison of different methodologies based 
on RMSE and MAPE values during model calibration was 
conducted. The results showed that the ANN approach 
outperformed other methods as evidenced by lower error 
values highlighting the superiority of ANN model in pre-
dicting the yield across different districts of Karnataka 
(Table  8). The superiority of the ANN approach over the 
conventional empirical model to predict the yield of maize 
(Uno et al. 2005), rice (Paswan et al. 2013) and other food 
crops (Behroozi-Khazaei et al. 2017; Basir et al. 2021). The 
performance of the ANN approach was based on nRMSE 
during model calibration in the F1 and F2 stages, except in 
Belagavi and Raichur, all other districts exhibited excellent 
results (F1 stage); and at the F2 stage, the performance was 
good in Dharwad, Belagavi, and Kalaburagi districts, while 
the remaining districts exhibited excellent results. This 
might be due to the ability of ANN to consider the colline-
arity between weather variables for yield prediction (Hagh-
verdi 2018; Abrouguia 2019). Variations in average weather 
patterns and extreme weather conditions have posed major 
risks to crop production worldwide. The use of machine 
learning algorithms is a reliable method for yield forecast-
ing with lower error. Proper tuning of model parameters 
and inclusion of large datasets for model calibration and 
validation is the key to successful prediction. A study on 
the effects of remote sensing and data size and climate on 
cotton yield prediction, cotton yield is affected by many 
factors that can be largely categorized as genetics, environ-
ment, and management practices (Sawan  2017; Bakhsh 
2005; Chaudhry 2009; Haghverdi 2018; Pokhrel 2018; Nied-
bala  2019). Therefore, there is a need for more studies to 
determine how ANN models can be used to determine the 
effects of these factors on cotton yield (Yildirim et al. 2022). 
The use of machine learning tools such as ANN, LASSO, 
NNet, etc., paves a promising approach for precision yield 
forecasting in other rainfed crops such as sorghum, rice, 
etc. where there’s observed variability in yield which can 
mainly be attributed for variations in weather conditions 
during the crop growth period. In turn, the outcomes 
of such studies aid in having an idea of advanced esti-
mates of crop yields based on weather conditions during 

initial crop growth periods, especially for decision making 
in future crop management and planning of policies. Fur-
thermore, the inclusion of more features related to soil and 
crop growth parameters in the future can help improve the 
accuracy of machine learning models. Observed differences 
in the model performances and these can be minimized 
by combining factors such as edaphic variables (e.g., soil 
moisture, nutrient availability) and management practices 
(e.g., irrigation, nutrient application). These factors may be 
gathered through physical observations or remote sensing 
by measuring plant vigor using the normalized difference 
vegetation (NDVI).

Further, the machine learning models are not devoid 
of critical limitations, for example, ANNs may perform 
well, but they often function as black-box models, lack-
ing interpretability and failing to reveal underlying rela-
tionships, such limitations have to be taken into account 
while the intention is to have an idea of underlying rela-
tionships besides yield estimation only (Hu et  al. 2023). 
The result provides an understanding of the model’s per-
formance across different districts and years, shedding 
light on both success and areas where improvements 
or further exploration may be beneficial. The interplay 
of factors influencing agricultural yield is complex, and 
these analyses serve as valuable guides for refining pre-
dictive models and agricultural strategies.

Conclusions
The study emphasizes the comparison of different sta-
tistical and machine learning techniques for forecasting 
kharif cotton yield in the growing regions of major cotton 
producing states in India. To account for the individual 
and interactive impacts of weather factors, weighted and 
unweighted weather indices were calculated and used 
as independent factors. One statistical model (SMLR) 
and four machine learning models (ANN, LASSO, ARI-
MAX, and RF) were tested and compared for their per-
formance in cotton yield forecasting in two growth stages 
(F1, vegetative stage and F2, mid-stage). The ANN model 
outperformed all other models, as demonstrated by the 
satisfactory ranges of the model performance evalu-
ated by RMSE, nRMSE, and EF values. Furthermore, the 
tested ANN model was used to identify the top ten vari-
ables of importance impacting kharif cotton yield in each 
district, which indicated the difference in the set of varia-
bles in different districts because of variability in weather 
factors and their interaction in each district under study. 
Morning relative humidity, along with its interactions 
with maximum and minimum temperatures significantly 
affects cotton yield in most of the predicted districts. 
Necessitating development of appropriate planning miti-
gate the negative impacts of weather variables on agricul-
tural policies.
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