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Abstract 

Background: The lateral root is one of the most important organs that constitute the root architecture system in 
plants. It can directly affect the contact area between plants and soil and plays an important role in plant structural 
support and nutrient absorption. Optimizing root architecture systems can greatly increase crop yields. This study was 
designed to identify the molecular markers and candidate genes associated with lateral root development in cotton 
and to evaluate correlations with yield and disease traits.

Result: The number of lateral roots for 14-day old seedlings was recorded for 215 Gossypium arboreum accessions. A 
correlation analysis showed that the number of lateral roots positively correlates with the sympodial branch node and 
seed index traits, but negatively correlates with lint percentage. A Genome-wide association study (GWAS) identified 
18 significant SNPs with 19 candidate genes associated with the lateral root number. Expression analysis identified 
three genes (FLA12, WRKY29, and RBOHA) associated with lateral root development.

Conclusion: GWAS analysis identified key SNPs and candidate genes for lateral root number, and genes of FLA12, 
WRKY29, and RBOHA may play a pivotal role in lateral root development in Asian cotton.
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Introduction
The lateral root, one of the most important organs in 
root system architecture, plays a pivotal role in water and 
nutrient acquisition that can influence crop productivity. 
In rice (Oryza sativa L.), the lateral root defective mutant 
osiaa11 and the root hairs defective mutant osrhl1 were 
used to demonstrate that lateral roots and not root hairs 
played a pivotal role in high Mn and Cd uptake (Yu et al. 
2021). In maize (Zea mays), Jia et al. (2018) proved that 

higher lateral root branch density has greater phosphorus 
acquisition from low phosphorus soil.

Lateral roots are initiated from the root pericycle 
cells by asymmetric cell division (Casero et  al. 1993). 
Research progresses on quantitative trait loci  (QTLs) of 
lateral root development have been reported in crops like 
rice (Oryza sativa L.) (Niones et al. 2015), rap (Brassica 
napus L.) (Ying et al. 2016), maize (Zea mays L.) (Wang 
et  al. 2019), and soybean (Glycine max (Linn.) Merr.) 
(Liang et  al. 2017), but little knowledge was discovered 
in cotton. The lateral root development is a complex pro-
cess that is mainly modulated by endogenous hormones. 
Auxin transport plays a pivotal role in root branching 
with different auxin “signal modules” regulating the vari-
ous stages of lateral root development (Marhavy et  al. 
2014; Talboys et al. 2014). A recent study found that the 
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AUXIN RESPONSE FACTOR 7 and its inhibitor IAA18/
POTENT formed a negative regulatory loop circuit to 
drive the root clock in Arabidopsis, which affected the 
spacing of lateral roots along the primary root (Perianez-
Rodriguez et al. 2021). Lv et al. (2021) overexpressed the 
transcription factor ERF13 in Arabidopsis, resulting in 
erf13 mutants with greater lateral root emergence, and 
showed that MPK14-mediated auxin signals controlled 
lateral root development through ERF13-regulated 
very-long-chain fatty acid biosynthesis. The auxin signal 
modules IAA14/SLR (SOLITARY ROOT)-ARF7-ARF19 
(Fukaki et  al. 2010), IAA12/BDL (BODENLOS)-ARF5 
(Ive et al. 2014), PIN proteins (Lewis et al. 2011; Inahashi 
et  al. 2018) have also been reported to be involved in 
the lateral root initiation and development. Other plant 
hormones, such as gibberellin (GA) (Farquharson 2010; 
Hetherington et  al. 2021), abscisic acid (ABA) (Duan 
et al. 2013; Zhao et al. 2014), ethylene (Ivanchenko et al. 
2008; Prasad et  al. 2010), and jasmonate (JA) (Cai et  al. 
2015; Kuo et al. 2020) were also associated with the lat-
eral root formation. In cotton (Gossypium hirsutum), the 
plant growth regulator mepiquat chloride promoted lat-
eral root formation by modulating GA, ABA, and auxin 
homeostasis (Wu et al. 2019).

Although plant hormones play an important role in 
lateral root development, the mechanisms of lateral root 
initiation in cotton have not been elucidated. Genome-
wide association study (GWAS) is a typical method to 
evaluate the association between millions of single nucle-
otide polymorphisms (SNPs) markers and a phenotype of 
interest in large populations for animals or plants. In cot-
ton, many important agronomic traits like yield (Du et al. 
2018), fiber quality (Fang et al. 2017; He et al. 2021) and 
disease-resistant related traits (Li et al. 2017) have been 
successfully dissected their underpinnings by GWAS. 
Gossypium arboreum (Asian cotton) is a diploid cotton 
species that can be used as a model to study root archi-
tecture development. DNA sequencing data is available 
for 215 G. arboreum accessions (Du et al. 2018). A GWAS 
analysis was conducted in the present study to detect the 
significant loci for seedling lateral root number. Results 
of this study could provide targets for cotton breeders 
to optimize the cotton root system structure to enhance 
yield potential.

Materials and methods
Determination of lateral root initiation rate
Lateral root development was initially evaluated in the 
Asian cotton standard line Shixiya1 (Li et  al. 2014) to 
identify the period with the highest frequency of lateral 
root initiation. Seeds of Shixiya1 were surface sterilized 
with 15%  H2O2 for ~ 30 min, then rinsed five times with 
steriled water. Seeds were germinated on moisten filter 

papers and then transplanted into hydroponic contain-
ers using a half-strength of Hoagland nutrient solution. 
The lateral roots were manually counted 4, 8, 12, 20 days 
after planting for each seedling. Five replicates were set, 
and each replicate included six plants. The average daily 
growth of lateral roots was calculated by increased lateral 
root number/growth days. The differences among growth 
periods were analyzed by t-test.

Lateral root evaluation for accessions
This evaluation used 215 G. arboreum accessions that 
had DNA sequencing and phenotypic data for 11 yield 
and disease-related traits (Du et  al. 2018). Seeds for 
the accessions were provided by the National Medium-
term Gene Bank of Cotton in China  (Anyang, Henan). 
Thirty-six seeds with full and uniform size for each acces-
sion were first selected for sowing. Then, all accessions 
were evaluated using the seed germination bag method 
according to the manual instructions (Zhao et al. 2021). 
Each accession included three independent replicates 
(one replicate per bag), and each bag contained 10∼12 
plants (Shixiya1 included as a control). The experiment 
was conducted in a greenhouse (Temperature: 28℃; pho-
toperiod: light/night = 16  h/8  h; relative humidity: 60% 
~ 65%). The number of lateral roots for each plant was 
counted 14 days after planting as described for the Shix-
iya1 evaluation. The mean number of lateral roots and 
their replicates were calculated and were used for further 
analysis (Additional file  1: Table  S1). A basic descrip-
tion analysis included the range, coefficient of variation, 
Skewness/Kurtosis was performed by GraphPad Prism 8 
(Francis 1995).

Correlation analysis of lateral root development 
with phenotypic traits
The lateral root data for the 215 accessions were corre-
lated with 11 yield and disease-related traits. The 11 yield 
and disease-related traits were (1) BW_AY (Boll weight 
in Anyang (Henan)), (2) BW_SY (Boll weight in Sanya 
(Hainan)), (3) BW_AKS (Boll weight in Aksu (Xinji-
ang)), (4) SBN_AY (Sympodial branch node in Anyang 
(Henan)), (5) SBN_AKS (Sympodial branch node in Aksu 
(Xinjiang)), (6) FWDI_AY (Fusarium wilt disease index in 
Anyang (Henan)), (7) LP_AY (Lint percentage in Anyang 
(Henan)), (8) LP_SY (Lint percentage in Sanya (Hainan)), 
(9) LP_AKS (Lint percentage in Aksu (Xinjiang)), (10) 
SI_AY (Seed index in Anyang (Henan)), (11) VWDI_AY 
(Verticillium wilt disease index in Anyang (Henan)). A 
pheatmap package method was used to plot the picture 
of the correlation matrix in R language (R Core Team 
2012).
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GWAS for lateral root development
The genotype data were derived from Du et  al. (2018), 
and DNA sequences of the same 215 accessions were 
used for the lateral root number in this study. The Bur-
rows-Wheeler Aligner program (BWA, ver. 0.7.10) (Li 
and Durbin 2009) and GATK toolkit (ver. 3.2–2) (Mck-
enna et al. 2010) were used to perform the reads mapping 
and SNP calling with the default parameters, respec-
tively. Software ANNOVAR tool (Kai et  al. 2010) was 
used to annotate the identified SNPs based on the newly 
updated G. arboreum genome (Yang et  al. 2019) anno-
tation information. After filtering, a total of 1  425  003 
high-quality SNP markers (MAF (Minor allele frequency 
for the genetic variant of interest) > 0.05, missing rate 
per site < 10%) were selected to perform the GWAS for 
lateral root trait with the EMMAX (Efficient mixed-
model association expedited) model (Kang et  al. 2010). 
The SNP density plot was drawn by R language with 
“CMplot” package (Turner 2018). The significance for 
LRN was first set as −log10(P) > 6.15 (1/total SNPs used, –
log10(P) = 6.15) (Li et al. 2017), but no effective loci were 
identified in all the 13 chromosome regions with this 
threshold. So we manually adjusted their threshold to 
P < 2.81 ×  10–6 (4/1  425  003 used, and −  log10(P) = 5.55), 
and those SNPs with −  log10(P) > 5.55 were defined as sig-
nificant SNPs. The candidate genes were identified by the 
physical locations of the significant SNP and the related 
stronger LD (linkage disequilibrium) block regions.

LD block and haplotype analysis for lateral root 
development
The confidence intervals for the lateral root data were 
identified by IGV_2.3.91 (Helga et  al. 2013) and were 
plotted by R language with the “qqman” package (Turner 
2018). The interval regions were further performed using 

LD block and Neighbor-Joining analysis in Tassel soft-
ware (Bradbury et al. 2007). The stronger LD block inter-
val regions were further determined using the haplotype 
analysis method described by Dai et al. (2020). The differ-
ent haplotypes were roughly estimated by the genotypes 
of different groups with the color scale method EXCEL 
2010 (https:// www. micro soft. com/ en- us/ micro soft- 365/ 
excel).

Transcriptome analysis
RNA-seq data of G. arboreum cultivar Shixiya1 had 
been sequenced by Huang et  al. (2020) (Accession: 
PRJNA594268 ID: 594268), and we downloaded the 
TPM (Transcripts per million) expression data of candi-
date genes from https:// cotto nfgd. org/. The root expres-
sion value of the seedling stage was utilized in this study. 
These candidate genes’ tissue and organ expression levels 
were plotted in R language with a pheatmap package.

Results
Lateral root development for Shixiya1
The number of lateral roots observed varied significantly 
across the four-time periods (Fig.  1). No lateral roots 
were recorded 4 days after planting, whereas lateral roots 
were clearly visible 8 days after planting with a mean of 
34.20 ± 7.60 recorded. The number of lateral roots con-
tinued to rapidly increase with a mean of 68.00 ± 9.98 
recorded 12 days after planting. At 20 days after planting, 
the rate of lateral root initiation had slowed with a mean 
of 85.80 ± 10.57 observed. The average daily growth of 
lateral roots was kept stable on 4∼8 d and 8∼12 d, but 
it rapidly slowed on 12∼20 d. Using these data, a 14-day 
time period was selected to evaluate the 215 accessions.

Fig. 1 Phenotype of lateral root number at 4, 8, 12, and 20 days after planting for Asian cotton standard line Shixiya1. a Phenotype pictures of 
lateral root development. b The numbers of lateral roots. c Average daily growth rate of lateral root number (LRN). * and ***: significant at P < 0.05 
and P < 0.001, respectively

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://cottonfgd.org/
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Lateral root data analysis for 215 accessions
To more conveniently describe the lateral root number, 
we abbreviate this trait as LRN. Furthermore, LRN_AV, 
LRN_R1, LRN_R2, LRN_R3 represented the mean and 
three replicates of LRN, respectively. LRN_AV ranged 
from 18.86 to 74.05 across the 215 accessions with a 
mean of 43.21 and a coefficient of variation of 26.81% 
(Additional file 1: Table S2). Replicates of LRN showed a 
similar range, mean, and variation with LRN_AV (Fig. 2a; 
Additional file 1: Table S2). LRN_AV and its three repli-
cates were biased towards the normal distribution due to 
their frequency distribution and Skewness/Kurtosis val-
ues, and this distribution was suitable for GWAS analy-
sis (Fig.  2b; Additional file  1: Table  S2). We are curious 
about the correlation of the lateral root trait with yield 
and disease resistance-related traits. So, a correlation was 
performed. The result showed that LRN_AV positively 
correlated with the sympodial branch node and seed 
index traits. Notably, a negative correlation with the lint 
percentage was observed (Fig.  2c). However, LRN_AV 
showed a weak correlation with the other yield traits like 
boll weight and disease-related (VWDI) traits.

GWAS for the number of lateral roots
A total of 1  425  003 high-quality SNP markers were 
screened out to perform the GWAS in this study, and 
those SNP densities were shown in Additional file 2: Fig. 

S1. The quantile–quantile (QQ) plots of LRN_AV, LRN_
R1, LRN_R2, and LRN_R3 indicated that the EMMAX 
could be used to identify signals for lateral root number 
in Asian cotton (Additional file 3: Fig. S2). The Manhat-
tan plots of LRN_AV and its three replicates showed 
stronger signals on Chr01, Chr07, Chr13, and Scaffold 
regions (Chr14). The strongest signal was found on Scaf-
fold regions, and a continuous, more robust signal inter-
val on Chr01 (Chr01:78.20∼78.90  Mb) was detected in 
LRN_AV and all the three replicates (Fig. 3).

Identification of significant SNPs and candidate genes
Eighteen significant SNPs were detected for the lat-
eral root trait with 7 SNPs located on the Chr01, 5 
SNPs located on Scaffold regions, 3 SNPs located 
on Chr07, and 2 SNPs located on Chr13 (Additional 
file  1: Table  S3). The strongest signal was detected on 
SNP Chr14_23233813 with a  −  log10(P) value of 6.18 
and 6.68 for LRN_AV and LRN_R3, respectively. The 
allelic variant of this site was G/A, and this signal was 
located on the intergenic region of Ga14G0299 and 
Ga14G2065. The SNPs for the continuous stronger sig-
nal interval on Chr01 included SNP Chr01_78558940, 
SNP Chr01_78572007, SNP Chr01_78703010, SNP 
Chr01_78751608, SNP Chr01_78758771, and SNP 
Chr01_78784026. The LD block of this interval 
(Chr01:78.20–78.90  Mb) showed a stronger LD block 

Fig. 2 Frequency and correlation analysis of lateral root number for 215 Gossypium arboreum accessions. a The number of lateral roots observed in 
215 G. arboreum accessions. b Frequency of the lateral root number in 215 G. arboreum accessions. c Correlation analysis of LRN_AV with 11 yield 
and disease resistance-related traits
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on the region of Chr01:78 284 704–78 804 477, and this 
LD block was referred to as LD_Chr01 (Fig. 4a, b). Hap-
lotype analysis of the LD_Chr01 region (Fig. 4c) divided 
the 215 accessions into three haplotypes  (HapChr01_1, 
 HapChr01_2,  HapChr01_3), including 36, 68, and 111 
accessions, respectively. The LRN_AV recorded for 
 HapChr01_2 accessions was significantly higher than 

 HapChr01_1 and  HapChr01_3, and the mean number of lat-
eral roots for  HapChr01_3 was the lowest (Fig.  4d). The 
LRN_R1, LRN_R2, and LRN_R3 also showed the same 
result as LRN_AV (Fig. 4d).

Nineteen candidate genes for LRN were detected 
for the five chromosomal regions (Additional file  1: 
Table S4). Seven candidate genes were detected on Chr01, 

Fig. 3 Manhattan plots of lateral root number for 215 Gossypium arboreum accessions. AV represents the mean value of lateral root number, and R1, 
R2, R3 represent three replicates respectively. The significance threshold is shown by the blue dashed line
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Fig. 4 Haplotype analysis of lateral root number on Chr01. a The confidence interval on Chr01. b LD block analysis. c Haplotype classification of 
lateral root number on Chr01:78 2847 04–788 04 477. d Comparision of lateral root number between different haplotypes
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six on the scaffold region, two on Chr05, two on Chr07, 
and two on Chr13. The LD_Chr01 block was associated 
with the four candidate genes WRKY29, WDR7, PP1, and 
At5g41590. The strongest signals on the Scaffold region 
were associated with HSP23.9 and Ga14G2065. Other 
associated candidate genes and their significant SNPs 
were listed in the Additional file 1: Table S4.

TPM expression analysis of candidate genes
Ga01G0035 (S6PDH), Ga01G1695 (WRKY29), 
Ga01G1696 (WDR7), Ga01G1697 (PP1), Ga01G1699 
(RBOHA), Ga07G2390 (MIF2) and Ga14G1993 (FLA12) 
were expressed higher in the root organization with the 
highest TPM value (111.49) recorded for Ga14G1993 
(FLA12) (Fig. 5, Additional file 1: Table S5).

Discussion
Cotton is a tap root crop with a deep primary root and 
wide distribution of lateral roots to form a strong absorp-
tion network in the soil. Plant root can directly influence 
the development of above-ground organs, and different 
root traits may have a positive/negative correlation with 
yield-related traits in crops. In upland cotton, the root 
weight and taproot length appeared a positive correlation 
with lint yield, whereas the tap root showed a negative 
correlation with lint yield (Li et al. 2003). So far, there are 

no reports on the relationship between the  lateral root 
number and yield-related traits in cotton. In this study, 
we found that the lateral root number negatively corre-
lates with lint percentage and displays a positive correla-
tion with sympodial branch node and seed index traits. 
Verticillium wilt (VW) disease is caused by the soil-
borne fungus Verticillium dahliae, and the plant roots 
were usually firstly influenced when the VW disease hap-
pened. Whether the lateral root number (LRN) has a cor-
relation with VW disease index (VWDI)? Our correlation 
results showed a weak correlation between the LRN and 
VWDI. Our findings will deepen people’s understanding 
of the relationship between lateral root development and 
yield-related traits in cotton.

Research progresses on lateral root development were 
reported in several crops (Niones et al. 2015; Ying et al. 
2016; Wang et al. 2019), but so far, no QTLs/SNPs of lat-
eral root number was discovered in Asian cotton. While, 
in this study, we identified 18 significant signals in total 
and detected a stronger LD block on Chr01 for lateral 
root number in Asian cotton, which will greatly enrich 
researchers’ understanding of molecular markers that 
control lateral root development in cotton.

In the present study, seven candidate genes were 
expressed higher in root organs, and three genes (FLA12, 
WRKY29, and RBOHA) were closely associated with root 

Fig. 5 Heatmap of TPM value for candidate genes in Asian cotton standard line Shixiya1
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development. FLA12 encodes for Fasciclin-like arabi-
nogalactan protein 12 (Johnson et al. 2011). Arabinoga-
lactan proteins FLAs are involved in plant growth and 
development and play an  essential role in many plant 
species (Seifert et al. 2014; Zang et al. 2015). In Arabidop-
sis, At-FLA4 is necessary for the average growth of wild-
type roots under moderately elevated salinity stress. It 
positively regulates cell wall biosynthesis and root devel-
opment via modulating ABA signals (Seifert et al. 2014). 
Huang et  al. (2013) conducted a subcellular localization 
experiment for the cotton gene GhFLA1, and found the 
GFP fluorescence signals were displayed on the periph-
eral of transgenic GhFLA1(SP)-eGFPGhFLA1(GPI) 
Arabidopsis root cell. Further, they showed that this gene 
was involved in fiber initiation and elongation in upland 
cotton. In Barley, Stephan et  al. (2016) found that the 
transcription factor WRKY29 was one of the most impor-
tant candidate genes for root system variation, and a 
crucial amino acid substitution was detected within the 
conserved domain of WRKY29 among genotypes carry-
ing significant and minor QTL alleles. WRKY29 was also 
closely associated with ABA signaling. A recent study 
found that OsWRKY29 could act as a new ABA signaling 
repressor for seed dormancy in rice with RNAi mutant 
lines displaying greater sensitivity after ABA treatment 
(Zhou et al. 2020). The WRKY29 gene was negatively cor-
related with the ABA content, and down-regulated in the 
tolerant rootstocks under osmotic stress (Hezema et  al. 
2021). RBOHA is a burst oxidase homolog protein, which 
participates in diverse biological processes in higher 
plants (Arthikala and Quinto 2018). Arthikala et  al. 
(2018) found that the relative expression levels of PvR-
bohA were correlated with the activity of its promoter. 
The transgenic hairy roots of PvRbohA transcript silenc-
ing showed a significantly altered lateral root phenotype, 
which indicated that RbohA was involved in lateral root 
initiation, emergence, and development for P. Vulgaris. In 
rice, Groom et  al. (2010) identified the complete cDNA 
and genomic DNA sequence of rbohA. They hypothe-
sized that RbohA is a component of an NADPH oxidase 
that functions in defense-related active oxygen produc-
tion on the root surface. A recent study in Brassica camp-
estris showed that expression of RbohA and RbohD was 
induced by ABA and  H2O2 (Zhang et al. 2019).

Conclusion
GWAS of seedling lateral root number for 215 G. 
arboreum accessions identified 18 significant signals and 
19 candidate genes. Three genes, FLA12, WRKY29, and 
RBOHA, showed higher expression levels  in root sam-
ples Shixiya1, which may be associated with lateral root 
development. These findings will be essential to decipher 

the genetics behind developmental mechanisms of lateral 
root formation in Asian cotton.
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