Fig. 6

Schematic presentation of a possible regulatory model in cotton (Gossypium hirsutum L. acc. Xinluzhong 54) leaves under salt stress. Cells of cotton sense salt stress by RLKs or other unknown sensors, then transfer the external signal to the cytoplasm, and change the content of Ca2+, ROS and other hormones (i.e, ABA, JA). Inside of the cell, Ca2+ signal cascade (i.e, GhCBL2,3; GhCIPK8,9,10,25), ROS, MAPK cascade (i.e, GhMAP3K5,13,14,17-GhMKK2,4,9-GhMPK3,4,7) and other hormone signal cascades pathway are activated, which could alter the global transcriptional profiles in cotton (the expression of stress related transcription factors, such as MYB, ERF, NAC and bZIP are initiated). The expression of genes encoding proteins that related to salt stress response, including NHX, osmoregulation related and ROS scavenging proteins (i.e, GhLEA14; GhP5CS; GhPOD; GhSOD; GhCAT; GhFIB; GhADH1). Ultimately, pathways to maintain the osmotic homeostasis, ionic homeostasis and ROS homeostasis are activated to facilitate cotton to resist and adapt to salt stress